
Wireless Sensor Networks:
From Science to Reality

Kay Römer
ETH Zurich



2

Sensor Networks
Ad hoc network of sensor nodes
– Perceive (sensors)
– Process (microcontroller)
– Communicate (radio)
– Autonomous power supply

cc2250 
transceiver

Zigbee
transceiver

power module

3D accelerometer flash

miniaturization

modularization



3

Application Visions
D. Culler [Berkeley]



4

Reality #1
Micro climate in Redwoods 44 days

50 nodes per tree
UC Berkeley



5

Reality #2
Bridge vibrations due to wind / seismic

Days
59 nodes
UC Berkeley



6

Reality #3
Volcanic eruptions

9 km

4 days
10 nodes
Harvard



7

Reality #4
Sniper localization

Days
60 nodes
Vanderbilt



8

Vision = Reality?
Scientific experiments
– Developed and deployed by experienced 

computer scientists
– Small scale, short term
– Supervised operation
(Almost) no „real-world“ applications
– Developed and deployed by application 

domain experts
– Large scale, long term
– Unattended operation



9

Why?

Source:
OnWorld WSN Report



10

Ease of Use / Robustness

Some exemplary citations from people who 
developed and deployed sensor networks

– Depends on individual skill of developers [Cerpa01]
– Many iterations of system design / implementation 

required [Mainwaring02]
– Involves significant manpower [Hemingway04]
– Involves a certain amount of luck [Szewczyk04]
– Everything that could go wrong did go wrong 

[Langendoen06]



11

What is different?
Worst of distributed and embedded worlds
Dynamic, unreliable networks
– Links come and go
– Nodes come and go
– Mobility

Constrained resources
– Simple OS
– System-centric programming
– Many competing optimization goals
– Limited visibility

Application development and deployment 
very difficult!



12

WSN Application Lifecycle

Vision Design Implementation Test Deployment Operation

High-level 
application idea

Devise / chose 
• HW/SW Platform 
• System architecture
• Protocols
• Algorithms

Write code

Verify correctness:
• Lab setting
• Small scale

Install and verify 
correctness:
• Real world setting
• Large scale

Use and maintenance



13

Abstraction

Vision Design Implementation Test Deployment Operation

Level of abstraction

high

low

Isolated solutions for lifecycle phases
Low and varying level of abstraction

• High-level application functionality
• Application QoS requirements

• Node-level resource management
• Link-level communication aspects

Application

System



14

An Integrated Approach

A single high-level application specification drives
– Implementation
– Test
– Deployment

High-level Application Specification

Execution Verification

Vision Design Implementation Test Deployment Operation

compilation

Level of abstraction

high

low



15

High-level Specification

High-level Application Specification

Execution Verification

compilation



16

Desirable Languages
Declarative
– Specify desired application behavior
– Not: how to achieve this behavior

Node ensembles
– Specify behavior of a group of nodes or 

whole network
– Not: individual nodes

„# neighbors with a
temperature sensor“

1. Send request containing ...
2. Wait 10 seconds
3. Perhaps retransmit
4. Count distinct replies



17

Example: Role Assignment
Support for self-configuration
– Initially, all nodes are (more or less) identical
– Nodes take on specific functions

Examples
– Clustering: HEAD, SLAVE, GATEWAY
– Coverage: ON, OFF
– Aggregation: SOURCE, AGGREGATOR



18

Generic Role Assignment
Supports automatic assignment of roles 
to sensor nodes
– Maintain valid assignment as network 

changes

Declarative role specifications
– Definition of roles
– Definition of rules (constraints) for 

assignment
– Rules refer to node properties

battery = 80%
pos = (12.3, 3.4)
role = ON
…



19

Coverage [cf. PEAS]

ON :: {
battery >= threshold &&
count(1 hop) {

role == ON &&
dist(pos, super.pos) < R

} == 0 
}
OFF :: else

count(scope) { pred }
– Counts nodes matching pred within scope
– super.x equals property x of referring node



20

Clustering [cf. Passive Clustering]
CLUSTERHEAD :: {

count(1 hop) {
role == CLUSTERHEAD

} == 0 }
GATEWAY :: {

cheads == retrieve(1 hop, 2) {
role == CLUSTERHEAD

} &&
count(2 hops) {

role == GATEWAY &&
cheads == super.cheads

} == 0 }
SLAVE :: else

retrieve(scope, num) { pred } == cheads
– At least num nodes in scope must fulfil pred
– Bind the 2 nodes to cheads



21

Execution

High-level Application Specification

Execution Verification

compilation

Map high-level application functionality 
to node-level behavior
– Resource constraints
– Network dynamics



22

Distributed Algorithm
ON :: {

count(1 hop) {
role == ON

} == 0 }
OFF :: else

Property propagation
– Derive scope
– Scoped broadcast

Rule evaluation
– Evaluate all rules locally
– Assign first matching role
– Re-propagate changed properties

Scheduling
– Random delays to break synchronization

Notification
– Notify application of „stable roles“

Distributed fix-point iteration
– In practice very few iterations (see paper)



23

Role Initialization
Base algorithm
– All nodes start with role UNDEFINED
Probabilistic role initialization
– „Guess“ initial roles for each node
– Repair wrong guesses with base algorithm
– Goal: faster convergence
Two variants
– Use only static information
– Use runtime information (see paper)



24

Static Initialization
Basic approach
– Given: role specification, network density N
– Compute: P[r] = P[node assumes role r]
– Role init.: according to probabilities

Translate spec. to equation system
– P[ON] = P[no neighbors are ON]

= (1 – P[ON])N

– P[OFF] = 1 – P[ON]
– Solve for P[ON], P[OFF]

ON :: {
count(1 hop) {

role == ON
} == 0 }

OFF :: else



25

Verification

High-level Application Specification

Execution Verification

compilation

Verify system behavior against high-
level specification
– Resource constraints
– Limited visibility of network state



26

Verification Challenges
Not a binary YES/NO answer
– If NO, what and where is the problem?

Verification of deployed network
– Behavior differs to lab setting due to radio 

channel, sensor input, physical strain

Key challenge: limited visibility of the 
network state
– Once deployed, how can we access the state of 

nodes?
– Limited resources: no space/bandwidth for 

verification
– Heisenberg effect: measurement changes system 

behavior



27

Passive Verification
Wireless traffic reveals parts of network 
state
– Message contents (e.g., node role)
– Message timing

Approach: overhear network traffic
– Pro: No modification of sensor network
– Con: Additional hardware, incomplete 

information



28

A Stethoscope for WSN
A tool to support passive verification of 
sensor networks
Co-deployed with WSN
Only active during deployment
– Plentiful resources / energy

Removed after deployment
– Reuse for other

deployments



29

Stethoscope Architecture

WSN radio communication

captures and decodes packets

infer node state from packets

of node states with high-level specification

of node states and verification results

Sniffer

Node state

Verification

Visualization



30

Sniffer
Additional node with compatible radio
– Always on to capture all packets without 

participating in MAC protocol (e.g., sleep 
scheduling)

– Placed next to WSN

Forward packet stream to base station
– For centralized evaluation



31

Single sniffer cannot observe complete WSN
– Network of sniffer nodes (synchronized)

Sniffer nodes have a second radio
– High-bandwidth, robust (Bluetooth, WLAN, cable, ...)
– Free of interference with WSN radio

Sniffer Network

DB



32

Node State Inference
Infer relevant state of individual nodes 
from overheard messages
– E.g., role of each node, network neighbors

Also basic node state
– Node death: no messages
– Node reboot: seq number reset

Key problem: incomplete information
– Message loss
– Missing information in WSN protocol



33

Incomplete Information
Missing information (e.g., neighbors)
– Generation of protocols from high-level 

spec under our control
– We are free to include information in 

protocol as long as it is small enough
Message loss
– Cannot be avoided, but detected!
– Sequence number in each message 

(received n, but not n-1)
– Timing irregularities (expected 

transmission at t not received)



34

Fundamental Trade-Offs

Message loss [%]
Latency [factor]

In
Ac

cu
ra

cy

Main parameters of state inference
– Accuracy (correctness of inferred state)
– Latency (delay of state inference)
– Message loss (number of sniffer nodes)



35

Verification
Map high-level specification to checker
– Deal with incomplete information
– Distinguish errors and potential errors

Verification easy compared with 
execution
– Centralized instead of distributed
– Checking instead of producing a role 

assignment



36

Visualization
Node state
Correctness at node level
– OK, Warning, Error



37

Summary
Gap between application visions and reality
Two reason: ease of use / robustness
WSN application lifecycle
– Low level of abstraction
– Isolated solutions

An integrated approach
– Single high-level application specification drives 

implementation, test, and deployment

Example: Generic role assignment
– Declarative specification language
– Role assignment algorithms
– Passive verification



38

Thanks!

More details:
– Algorithms for Generic Role Assignment in 

Sensor Networks, Sensys 2005.
– Passive Inspection of Sensor Networks, 

DCOSS 2007.


	Wireless Sensor Networks:�From Science to Reality
	Sensor Networks
	Application Visions
	Reality #1
	Reality #2
	Reality #3
	Reality #4
	Vision = Reality?
	Why?
	Ease of Use / Robustness
	What is different?
	WSN Application Lifecycle
	Abstraction
	An Integrated Approach
	High-level Specification
	Desirable Languages
	Example: Role Assignment
	Generic Role Assignment
	Coverage [cf. PEAS]
	Clustering [cf. Passive Clustering]
	Execution
	Distributed Algorithm
	Role Initialization
	Static Initialization
	Verification
	Verification Challenges
	Passive Verification
	A Stethoscope for WSN
	Stethoscope Architecture
	Sniffer
	Sniffer Network
	Node State Inference
	Incomplete Information
	Fundamental Trade-Offs
	Verification
	Visualization
	Summary
	Thanks!

