BIOGREEN 2010 March 7-13, 2010 - Cancun, Mexico

Challenges in Bio-technologies, Systems and Environments

<u>Joel Jeffrey</u>, Northern Illinois University, USA <u>Kayvan Najarian</u>, Virginia Commonwealth University, USA <u>Keat Teong Lee</u>, University Sains Malaysia, Malaysia <u>Vladimir Strezov</u>, Macquarie University, Australia BIOGREEN 2010 March 7-13, 2010 - Cancun, Mexico

Challenges in Bio-technology, Systems and Environment

Vladimir Strezov

Challenges

- Population growth
- Economic growth and change in lifestyle
- Energy demand
- Nutrient demand
- Pressure on soils
- Energy crops vs food products

Managing for Sustainability

- Sustainability = Benefits / Impacts
- Forecasting vs backcasting approach to management

System Approach to the Biochar Opportunity

An Immodest Proposal

A Computer Scientist Looks at Biology

Biological information today

- Molecular Biology of the Cell (Alberts et al):
 - 7 pounds (3.2 Kg)
 - 1460 pages
 - 99%: English, pictures
- *Biochemistry* (Voet & Voet):
 - 7 pounds
 - 1500 pages
 - 99%: English, pictures

Biological and computer systems

- HUGE!
 - Thousands or millions of components
 - Complex objects
 - MANY processes that have to go just right
 - Processes and objects have hierarchical structure
 - Especially in biology: structure is a central concept

English is lousy for descibing huge systems

- Computer scientists know: English is NOT for describing big, complex systems
 - Not designed for giving precise, technical specification of systems with 1000's or 1,000,000's of interacting components
 - Not designed for giving precise specifications of structure at all levels
 - System \rightarrow subsystem \rightarrow class \rightarrow method \rightarrow code
 - Organism → organ system → organ-structure → cell → organelles → biological molecules

Computer scientists use:

- Use case diagrams
- Class diagrams
- Sequence diagrams
- Executable code

- English indispensible, but not enough
- We've learned the hard way

Role of math in physics & engineering vs. biology

- Physics, engineering, computing: structure and behavior of objects & processes of interest described with mathematics
- Biology: structure and behavior of objects & processes of interest described with English and pictures
 - No mathematics for describing the structure and behavior of the things we're interested in
 - Equations: for a few of the relationships between quantities, some of the properties
 - Behavior: single-level graphs/nets

Compare

$$i\hbar \frac{\partial}{\partial t}\Psi(\mathbf{r},\,t) = \hat{H}\Psi(\mathbf{r},\,t)$$

VS.

• The hemoglobin molecule has four globular protein subunits. Each subunit is composed of a protein chain and a non-protein heme group. Each protein chain arranges into a set of connected alphahelix structural segments. The connected alphahelix segments contain a pocket. The pocket binds heme group. The heme group consists of an iron ion held in a porphyrin ring. A porphyrin ring consists of four pyrrole molecules cyclically linked together with the iron ion bound in the centre. Oxygen binds to the Fe ion. When oxygen is not bound, a very weakly bonded water molecule fills the site, forming a distorted octahedron.

Or pictures

Result

- We cannot:
 - <u>Quantify</u> structural differences
 - How similar are normal hemoglobin and sickle cell hemoglobin?
 - Degree of similarity cannot be stated mathematically
 - <u>Calculate</u> how different structures are
 - Formally <u>state</u> effects of genetic changes on structures (at multiple levels)
 - Because we can't state or quantify the structure change formally
 - Search databases for similar structures

The immodest proposal

- Add rigor to biology
- Devise a mathematics for describing biological things <u>formally</u>
 - Structures (at all levels)
 - Processes (at all levels)
 - States of affairs (at all levels)
- So that huge multi-level biological systems (e.g., a cell) can be described formally, just as computer systems are now

One candidate: Entity Specifications

- Use (Name, Description) methodology to define objects, processes, generalized states (states of affairs)
 - Name: formal identifier of the entity
 - Description: formal identifiers for
 - The entity's parts (immediate constituents)
 - The relationships between constituents
 - *Any* relationship, not only those mathematically definable

ES formalism

- An Entity Specification: an ordered pair (N, D), where:
 - N is the formal name of the object or process
 - D is the *description* of the entity: an ordered pair (C, R), where:
 - $C = \{C_i\}$, in which C_i are the constituents
 - R = {R_j} is the set of n-ary relationships that must hold between the named constituents.
 - Adjacent, Distance(x,y), Inside(Nucleus, chromatin), ...
 - Equations are relationship definitions

An example of the payoff of mathematics

ESs: one way

- The real point: change the way math is seen by biologists
- "Mathematics is the language of physics"
- It should be the language of biology

VCU Virginia Commonwealth University

Challenges in Bio-technologies, Systems and Environments

Biomedical Information Processing for Computer-Aided Medical Decision Making

Kayvan Najarian

 Main Challenge: Information Integration and Processing for Computer-Aided Decision Making

• Example I: Portable Smart Monitoring Systems

• Example II: TBI Decision Making Using Image Processing and Machine Learning

Incorporating genomic and proteomic information in decision-making process

Forming effective standards for data collection and managment

Kayvan Najarian's Biomedical Signal and Image Processing Lab

Developing Technologies for the Bottom Billion

Considerable progress has been made over the past 50 years

- Unprecedented economic growth
- Life expectancy increase
- Agricultural product increase A drop in food price

Yet major problems remains:

- 1.2 billion people live on less than US\$ 1 per day
- 1 billion people do not have access to clean water
- More than 2 billion people have no access to sanitation
- 1.3 billion people are breathing air below the standard consider acceptable by WHO
- 800 million people food insecure

Challenges of Bio-technology - Health

Typhoid Fever

- Typhoid fever or commonly just typhoid is a common worldwide illness, transmitted by the ingestion of food or water contaminated with the feces of an infected person.
- Typhoid fever remained as a public health problem in many developing countries.
- Current diagnosis for typhoid is via the method of culture and serology (Widal test). These methods lack sensitivity, specificity and speed (more than 1 day).
- TYPHIRAPID was recently and successfully developed in USM to detect typhoid in 20 minute at a cost that is only a quarter of current technology. This has made a huge impact for the bottom billion.