IARIA Work Group Meeting: Advances on Systems

Topic: Robustness in Realtime Complex Systems

Moderator: Gary Weckman Ohio University USA

Robustness in Real-time Complex Systems

- What is complexity?
 - Interactions?
 - Defy understanding?
- What is robustness?
 - Predictable performance?
 - Ability to absorb change?
- Robustness in:
 - Behavior?
 - Modeling?

Expert Panelists

- Gary Weckman , Ohio University, USA
- Marko Jäntti, University of Kuopio, Finland
- Daniela Dragomirescu, LAAS-CNRS, University of Toulouse, France
- Andy Snow, Ohio University, USA
- Discussion and Q&A Session

Robustness in Real-time Complex Systems: WSN case study

Daniela Dragomirescu LAAS-CNRS, University of Toulouse France

IARIA Work Group Meeting : Advances on systems

WSN - Complex systems

- WSN very high number of nodes \rightarrow complex systems, network
- Supposed to work for very different applications
 - * One system, communicating sensor node, can answer to very different applications ?
 - * Which will be the complexity of such a node?
 - * The energy consumption ?
- Constraints are applications dependent
 - * Real-time very important constrant application for WSN for metrology ar
 - Localization
 - Synchronization
 - Safety of the communications
 - Security of the communications

very important for WSN in aeronautics

To answer to the application dependent constraint
→reconfigurable hardware

- Hardware robustness ?
 - * Simulations using models, testing using models

 - * User experiences \rightarrow back-annotation to hardware models
- WSN implies hardware and software elements
- Co-design hardware software needs of very accurate models

 Testing in labs (arround 10 nodes) - demonstrate the principle of the hardware developed systems and software protocol.

- How to predict the functioning of more than 1000 nodes in different environments (aircrafts, satellites, industric lants, nuclear plants, etc)
- What robustness for such a system ?

- Network simulator has to be developed, including the ha. vare layers and the channel propagation. Determine best network topology.
- How accurate will be the first models we will include in the simulator ?

Models and their accuracy is a key point !

 Taking into account from the beginning hardware and software developments and their connections.

Real testing can't be replaced !

Thank you !

Contact : Daniela Dragomirescu daniela@laas.fr http://www.laas.fr/~daniela

Marko Jäntti, ICONS 2010 panel

Robustness in Real-time Complex Systems: Testing-based approach

Robustness in Software Engineering

- Definition of Robustness [FDA]:
 - "the degree to which a software system or component can function correctly in the presence of invalid inputs or stressful environmental conditions."

UML-based Test Model: A Case Study

- Case organization: A large university hospital in Finland
- The system under test: a healthcare information system
 - Medical referral module
 - Resource management module
 - Time booking module
- The research goal: to identify system defects through the UMLbased test model

Case study results

• Testing revealed

A test case with "Invalid" input

Estimated time of care -3 days

- one serious defect (Run-time error 6160) in the Resource Management module
- two serious defects (Run-time error 438) in the Referral module
- numerous usability problems

Attachment 1 X-ray Attachment 2 X-ray

Х-	ray	~
Х-	ray	~

- poor robustness (the modules did not recover after run-time errors)
- How to improve robustness of systems?
 - Better exception handling
 - More focus on the use of test models

Thank you!!

- Contact:
 - Marko Jäntti, PhD.
 - marko.jantti@uef.fi

Avoiding, Accepting and Influencing Complex System Behavior

Andy Snow School of Information & Telecommunication Systems Ohio University

Complex Systems

Examples

- Internet, PSTN
- Electric Power (generation, grid)

Unforeseen stimuli

- Internal
 - Latent defects and vulnerabilities
 - Hidden instabilities
 - Scalability limitations
- External
 - Traffic intensity and mix
 - Other system interactions
 - Socio-political-economic interactions
 - Natural disasters
- Users demand robustness

• dx or Dx e or E

- Random deviations....erratic outputs?
- Random or rare externalities.....erratic outputs?

Lifecycle Robustness

User requirements System requirements Architecture Component Specification Detailed Design Deployment Operations

Robust Models

- Can we really model complex system behavior?
 - Can we enumerate all internal and external operating conditions?
 - Exhaustive testing and modeling prior to deployment possible?
 - Performance Perturbations vs. Loss of function or availability?
- "All models are wrong. Some are useful"

Complexity and Robustness

- "There isstruggle between complexity and robustness in both evolution and human design."
- "A....survival imperative, whether in biology or engineering, requires.....fragile systems become more robust."
- "...mechanisms to increase robustness will...make the system considerably more complex."
- ".....additional complexity brings with it its own unanticipated failure modes....."
- "This balancing act between complexity and robustness is never done."

Irving Wladawsky-Berger Posted on August 25, 2008 at Complex Systems, Innovation, Technology and Strategy

Complexity 1 Robustness

Complexity Robustness

1. <u>Avoid</u> complexity (KISS)

Complexity

Robustness

 <u>Avoid</u> complexity (KISS)
<u>Accept</u> complex system behavior (Live with it) "Normal Accidents"

Complexity

Robustness

1. <u>Avoid</u> complexity (KISS)

 Accept complex system behavior (Live with it) "Normal Accidents
Influence complex system behavior (Try to predict and avoid outlier behavior)

Complexity

Robustness

1. <u>Avoid</u> complexity (KISS)

 Accept complex system behavior (Live with it) "Normal Accidents"
Influence complex system behavior (Try to predict and avoid outlier behavior)

Yes.....all three!!!!!