



### Transport and Networking: Future Internet Trends

### **Eugen Borcoci**

University POLITEHNICA Bucharest

Eugen.Borcoci@elcom.pub.ro





### Acknowledgement

This overview presentation is based on several public documents and different authors' and groups work: Future Internet, conferences public material, research papers and projects, overviews, tutorials, etc.: (see Reference list).





- 1. Introduction
- 2. Adapting network layer to content: Information/Content Centric Networking
- 3. Decoupling Data and Control Planes : Software Defined Networks
- 4. Flexibility: Virtualization
- 5. XaaS: Cloud computing
- 6. Telecom (ITU-T) solutions
- 7. Conclusions





### 1. The Introduction

- 2. Adapting network layer to content: Information/Content Centric Networking
- 3. Decoupling Data and Control Planes : Software Defined Networks
- 4. Flexibility: Virtualization
- 5. XaaS: Cloud computing
- 6. Telecom (ITU-T) solutions
- 7. Conclusions



### **1.Introduction**



#### Why this talk ?

- Future Internet challenges to solve the current Internet limitation and ossification (flexibility, management, security, QoS, adaptation to new services needs, mobility, etc.)
- Many factors influencing the development: Social, Economic and Environmental Challenges
  - Source: Future Internet Towards Research Challenges 07 APRIL 2009, http://www.future-internet.eu/fileadmin/documents/prague\_documents/FI





### **1.Introduction**



- Evolutionary approach Clean slate approach Intermediate solutions

- Transport layer and network layer are supposed to be changed



Source: Petri Mahönen, Project Coordinator, EIFFEL, RWTH Aachen University" Evolved Internet Future for European Leadership (EIFFEL)", FI Conference, Bled, 2008





#### Traditional TCP/IP stack

- Single architectural plane (Data, Control, Management)
- IP best effort- simple very flexible, dynamic
  - Connectionless
  - No guarantees
  - Agnostic w.r.t services and applications
  - High success (40 years)
- Transport layer
  - Main protocols:TCP (CO), UDP(CL)
- Application layer
  - Supposed to solve all problems unsolved by L3, L4
- IP Addressing
  - Identity and location- included in IP address → problems





- 1. Introduction
- 2. Careford Adapting network layer to content: Information/Content Centric Networking
- 3. Decoupling Data and Control Planes : Software Defined Networks
- 4. Flexibility: Virtualization
- 5. XaaS: Cloud computing
- 6. Telecom (ITU-T) solutions
- 7. Conclusions



# 2. Information/Content Centric Networking



- ICN/CON/CCN/CAN/NDN....
  - recent significant attention of the research community and also industry and operators
  - propose some fundamental changes for TCP/IP networking
    - claiming several advantages in the perspective of Future Internet
  - Terminology
    - Not standardised, different (overlapping) semantics...
      - ICN/CCN Information/Content Centric Networking
      - CON Content Oriented Networking
      - DON Data Oriented Networking
      - CAN Content Aware Networking
      - NDN Named Data Networking
    - Related terminology:
      - SON Service Oriented Networking
      - NAA- Network Aware Applications
    - Examples of ICN/CON Projects
      - EUROPE : PSIRP, 4WARD, PURSUIT, SAIL, ...
      - USA: CCN , DONA , NDN, ...

### 2. Information/Content Centric Networking



- Example : Content Centric Networking
  - Relevant proposal in the area
  - Why CCN ? : Current networks evolve mainly to content distribution and retrieval
- Source: Van Jacobson Diana K. Smetters James D. Thornton Michael F. Plass, Nicholas H. Briggs Rebecca L. Braynard, Networking Named Content, Palo Alto Research Center, Palo Alto, CA, October 2009

#### CCN Concepts

- Traditional networking : connections based on hosts locations
- CCN proposes changes : where to what.
- Content treated as a primitive
  - decoupling location from identity, security and access
  - retrieving content by name
- Routing named content, (derived from IP), allows, (claimed by authors), to achieve scalability security and performance



### 2. Information/Content Centric Networking



#### CCN concepts (cont'd)

CCN proposes new "thin waist" of the Internet: IP → to chunks of named content Application Application



| Application                                  | Applications:<br>browser chat,<br>file stream:<br>Security<br>Content chunks                     |
|----------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                              | Strategy<br>P2P,                                                                                 |
| TCP, UDP,                                    | UDP                                                                                              |
| IP                                           | Intra-domain routing: OSPF,<br>Inter-domain routing: BGP,<br>(placed here to show their<br>role) |
| Data link                                    | Any Layer 2                                                                                      |
| Physical<br>Layer<br>(wireline,<br>wireless) | Any PHY                                                                                          |

Alternative view of CCN stack (if it run on top of IP)

Source: Van Jacobson Diana K. Smetters James D. Thornton Michael F. Plass, Nicholas H. Briggs Rebecca L. Braynard, Networking Named Content, Palo Alto Research Center, Palo Alto, CA, October 2009





### CCN Concepts (cont'd)

- CCN specific features- different from IP
  - Strategy and security: new layers
  - can use multiple simultaneous connectivity (e.g., Ethernet, 3G, 802.11, 802.16, etc.) due to its simpler relationship with layer 2.
  - Strategy layer
    - *makes dynamic optimization* choices to best exploit multiple connectivity under changing conditions
  - Security Layer
  - CCN secures the content objects rather than the connections over which it travels (this is to be discussed more..)
    - avoiding many of the host-based vulnerabilities of current IP networking





CCN packets (original paper)



**CCN Forwarding Engine Model (See Reference)** 

Source: Van Jacobson Diana K. Smetters James D. Thornton Michael F. Plass, Nicholas H. Briggs Rebecca L. Braynard, Networking Named Content, Palo Alto Research Center, Palo Alto, CA, October 2009





#### **CCN** operation: high level description

- The content producers advertise their content objects
- The nodes store the interfaces from where content can be reachable
  - Some "forwarding tables" are filled
- The consumers broadcast their interest for some content
- Any node hearing the *Interest* and having stored the required content can respond with *Data* packet
- Data are returned as a response to an interest only and consumes this interest (1to- 1 relationship Interest-Data)
- Multiple nodes interested in the same content may share the Data Packets: CCN is naturally multicast enabled
- Network nodes can perform caching- CDN similar functions

#### **Content characterisation:**

Data 'satisfies' an Interest if the *ContentName* in the *Interest Packet* is a prefix of the *ContentName* in the *DataPacket* 







#### CCN Still open questions

- What significant benefits does ICN designs offer?
- Are ICN designs the best solution to achieve those benefits?
- Is the current technology prepared to introduce soon these changes?
  - Apparently not yet....
- Seamless development possible?
- Scalability issues
  - Network nodes store information objects and not locations
  - Number of info objects is much greataer than number of locations
- High processing tasks for routers
- Less support from the industry
- ....?





- 1. Introduction
- 2. Adapting network layer to content: Information/Content Centric Networking
- 3. Control Planes : Software Defined Networks
- 4. Flexibility: Virtualization
- 5. XaaS: Cloud computing
- 6. Telecom (ITU-T) solutions
- 7. Conclusions





### SDN architecture

- Important concept: Control and data planes are decoupled
  - Increase flexibility (any SW in the control plane independent on the switch/routers vendor solutions embedded in network devices)
  - OpenFlow protocol proposed for communication between planes
    - Open Networking Foundation (ONF- non-profit industry consortium ) → OpenFlow I/F specifications for SDN
  - Network intelligence is more centralized
    - better and also flexible control of the resource management (good for QoS control)
    - overall image of the system in the control plane
    - programmability of the network resources
  - Underlying network infrastructure is abstracted from the applications





### SDN architecture (cont'd)

- SDN + OpenFlow I/F(first standard) advantages:
  - high-performance, granular traffic control across multiple vendors' network devices
  - centralized management and control of networking devices improving automation and management
  - common APIs abstracting the underlying networking details from the orchestration and provisioning systems and applications;
  - flexibility: new network capabilities and services with no need to configure individual devices or wait for vendor releases
  - programmability by operators, enterprises, independent software vendors, and users (not just equipment manufacturers) using common programming environments
  - Increased network reliability and security as a result of centralized and automated management of network devices, uniform policy enforcement, and fewer configuration errors.





- SDN Architecture (cont'd)
- SDN + OpenFlow (first standard) I/F allow for:
  - more granular network control with the ability to apply comprehensive and wide-ranging policies at the session, user, device, and application levels
  - better end-user experience as applications exploit centralized network state information to seamlessly adapt network behavior to user needs
  - protects existing investments while future-proofing the network
  - With SDN, today's static network can evolve into an extensible service delivery platform capable of responding rapidly to changing business, end-user, and market needs.

#### **SDN short history**

- 2008: Software-Defined Networking (SDN) : NOX Network Operating System [Nicira] ; OpenFlow switch interface [Stanford/Nicira]
- 2011: Open Networking Foundation (72 members) : Board: Google, Yahoo, Verizon, DT, Msoft, F'book, NTT ; Members: Cisco, Juniper, HP, Dell, Broadcom, IBM,.....





#### SDN Architecture

#### Network OS:

- Distributed system that creates a consistent, updated network view
- Executed on servers (controllers) in the network
- Examples: NOX, ONIX, HyperFlow, Floodlight, Trema, Kandoo, Beacon, Maestro,..
- Uses forwarding abstraction in order to:
  - Collect state information from forwarding nodes
  - Generate commands to forwarding nodes







- SDN Architecture
- Advantages
- Centralization allows:
  - To alter network behavior in real-time and faster deploy new applications and network services (hours, days, not weeks or months as today).
  - network managers can flexibility to configure, manage, secure, and optimize network resources via dynamic, automated SDN programs ( not waiting for vendors).
- APIs make it possible to implement
  - common network services: routing, multicast, security, access control, bandwidth management, QoS, traffic engineering, processor and storage optimization, energy usage
  - policy management, custom tailored to meet business objectives
    - Easy to define and enforce consistent policies across both wired and wireless connections on a campus.
- Manage the entire network through intelligent orchestration and provisioning systems.





- SDN Architecture
- Advantages (cont'd)
- ONF studies open APIs to promote multi-vendor management:
  - possibility for on-demand resource allocation, self-service provisioning, truly virtualized networking, and secure cloud services.
- SDN control and applications layers, business apps can operate on an abstraction of the network, leveraging network services and capabilities without being tied to the details of their implementation.

#### SDN :

- the network itself is not so much "application-aware" as "applicationcustomized" and applications not so much "network-aware" as "networkcapability-aware"
- different approach w.r.t.ICN/CON/CCN
- Question: these two technologies could cooperate?
  - Some recent answers: yes!





### OpenFlow protocol

- first SDN standard communications CPI-DPI I/F
- allows direct access to the Fwd.Plane of network devices (switches and routers), both physical and virtual (hypervisor-based).
- network control is moved out of the networking switches to logically centralized control software.
- specifies basic primitives to be used by an external SW application to program the Fwd.Plane (~ instruction set of a CPU would program a computer system)
- uses the concept of flows to identify network traffic based on pre-defined match rules that can be statically or dynamically programmed by the SDN control SW.
- allows IT to define how traffic should flow through network devices based on parameters such as usage patterns, applications, and cloud resources
- allows the network to be programmed on aggregated or per-flow basis
  - provides if wanted- extremely granular control, enabling the network to respond to real-time changes at the application, user, and session levels





#### OpenFlow Protocol (cont'd)

Source Ref1: "OpenFlow: Enabling Innovation in Campus Networks"- Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, Jonathan Turner



Ref1: Example of a network of OpenFlowenabled commercial switches and routers.



Solving the scalability: several controllers

Source: S.Hassas Yeganeh, A.Tootoonchian, and Y.Ganjali, On Scalability of Software-Defined Networking, IEEE Comm. Magazine • February 2013





- 1. Introduction
- 2. Adapting network layer to content: Information/Content Centric Networking
- 3. Decoupling Data and Control Planes : Software Defined Networks
- 4. Flexibility: Virtualization
- 5. XaaS: Cloud computing
- 6. Telecom (ITU-T) solutions
- 7. Conclusions





- Main tool to slicing the hosts/nodes and network
- Largely applied in FI proposals
- Dynamic customized and isolated slices



Dynamic customised VNets, Vpaths, unicast /mcast/P2P

Source: N.M. Chowdhury and R.Boutaba, A Survey of Network Virtualization, University of Waterloo, Technical Report: CS-2008-25, 2008 InfoSys 2013 Conference, March 24-29, 2013 Lisbon













- 1. Introduction
- 2. Adapting network layer to content: Information/Content Centric Networking
- 3. Decoupling Data and Control Planes : Software Defined Networks
- 4. Flexibility: Virtualization
- 5. **The XaaS: Cloud computing**
- 6. Telecom (ITU-T) architectural solutions
- 7. Conclusions



### **5. Cloud Computing**



High level view of cloud computing

#### Cloud model (source: National Institute of Standardization - NIST)

- five essential characteristics ; three service models; four services models
- Source: P.Mell, Ti.Grance, The NIST Definition of Cloud Computing, Special Publication 800-145, Rec. of the National Institute of Standards and Technology, 2011
- Source: F.Liu, J.Tong, J.Mao, R.Bohn, J.Messina, L.Badger and D.Leaf, Rec. of the National Institute of Standards and Technology, NIST "Cloud Computing Reference Architecture", Special Publication 500-292, 2011

Access a Web based Application from Any connected devices using:

- 1. Web Browser
- 2. Internet /VPN network connectivity







#### Cloud model

#### NIST cloud computing reference architecture







- Cloud model
- Cloud Characteristics
  - On-demand self-service
  - Broad network access
  - Resource pooling (storage, processing, memory, network bandwidth, etc.)
  - Rapid elasticity (for provisioning/releasing resources)
  - Measured service (automatically control and optimize resource utilization)
- Cloud services
  - NIST:

.

- Software as a Service (SaaS).
- Platform as a Service (PaaS).
  - Infrastructure as a Service (laaS) -
- ITU-T (defined additional services)
  - Network as a Service NaaS
  - Communication as a Service- CaaS, etc.

#### Deployment model

Private cloud ; Community cloud; Public cloud; Hybrid cloud

Transport and

network layer -

involved





- Cloud model
- NIST cloud computing reference architecture
- Five entities/actors
  - Cloud Consumer : a person or organization that maintains a business relationship with, and uses service from, Cloud Providers
  - Cloud Provider: a person, organization, or entity responsible for making a service available to interested parties
  - .
  - Cloud Auditor: a party that can conduct *independent assessment* of cloud services, information system operations, performance and security of the
  - cloud implementation
  - Cloud Broker: an entity that manages the use, performance and delivery of cloud services, and negotiates relationships between Cloud Providers and Cloud Consumers
  - Cloud Carrier: an intermediary that provides connectivity and transport of cloud services from Cloud Providers to Cloud Consumers.



### 4. Cloud Computing



- ITU-T vision on cloud computing
- Telecommunication centric Cloud Ecosystem, cloud services and use cases
- Cloud service: A service that is delivered and consumed on demand at any time, through any access network, using any connected devices using cloud computing technologies
- Cloud Ecosystem
  - **Cloud Service Provider (CSP):** An organization that provides and maintains delivered cloud services:
    - Provider of SaaS ,CaaS, PaaS, IaaS, NaaS
    - Inter-cloud Provider: Inter-cloud peering, Inter-cloud service broker, Inter-cloud
  - federation
  - Cloud Service User (CSU) A person or organization that consumes delivered cloud services (Consumer, Enterprise, Governmental/public institution)
  - <u>Cloud Service Partner (CSN)</u> A person or organization that provides support to the building of the service offer of a CSP: Application developer, Content provider, SW provider, HW provider, Equipment provider, System integrator, Auditor
- Source: ITU-T: Focus Group on Cloud Computing ; FG Cloud TR Version 1.0 (02/2012) Part 1: Introduction to the cloud ecosystem: definitions, taxonomies, use cases and high-level requirements





- ITU-T vision on cloud computing
- New types of Cloud Services (ITU-T)
  - Communication as a Service CaaS : real-time communication and collaboration services
  - (VoIP, A/VC), collaborative services, unified communications, e-mail, instant messaging, data sharing (web conference)
  - Network as a Service NaaS : transport/connectivity services intra and/or inter-cloud network connectivity services.
  - Managed Internet (guaranteed speed, availability, etc.) virtualized networks (VPNs), coupled with cloud computing services, flexible and on demand bandwidth







- ITU-T vision on cloud computing
- ITU-T Cloud computing functional reference architecture



Source: ITU-T Focus Group on Cloud Computing Technical Report





#### ITU-T vision on cloud computing

ITU-T Cloud computing functional reference architecture







- ITU-T vision on cloud computing
- ITU-T Cloud computing functional reference architecture

#### Access layer

- Endpoint : controls cloud traffic and improves cloud service delivery
- Inter Cloud: addresses delivering any cloud service across two or more CSPs
- Services layer
  - Service Orchestration: is the process of deploying and managing "Cloud Services"
  - Cloud Services: provides instances (and composition) of CaaS, SaaS, PaaS, IaaS & NaaS

#### Resources & Network Layer

- Resource orchestration
- Pooling Virtualization: compute, storage, network, software & platform assets
- Physical resources





- 1. Introduction
- 2. Adapting network layer to content: Information/Content Centric Networking
- 3. Decoupling Data and Control Planes : Software Defined Networks
- 4. Flexibility: Virtualization
- 5. XaaS: Cloud computing
- 6. Telecom (ITU-T) solutions
- 7. Conclusions





Next Generation Network Architecture



\* NOTE - Gateway (GW) may exist in either Transport Stratum or End-User Functions.





- 1. Introduction
- 2. Adapting network layer to content: Information/Content Centric Networking
- 3. Decoupling Data and Control Planes : Software Defined Networks
- 4. Flexibility: Virtualization
- 5. XaaS: Cloud computing
- 6. Telecom (ITU-T) solutions
- 7. Conclusions





- New architectures and technologies are proposed for FI affecting the network and transport layers
- Information/Content Centric Networking
  - Revolutionary approach (change classic networking paradigms)
  - Strong information/content orientation
  - Still not developed in the industry
  - Many open research issues
- Software Defined Networking
  - Evolutionary approach
  - Separation Data Plane Control and Management plane + Centralization
  - Flexibility
  - Much more support in the industry
- Virtrualization: nodes, links
- Cloud Computing
  - Data Centers offering flexible network/transport services
    - laaS, NaaS
  - Strong support in the industry
- Future Internet: probably will be combinations of such technologies





## THANK YOU!

### • Questions ?





- 1. J. Schönwälder, M. Fouquet, G., Dreo Rodosek, and Hochstatter, I.C., "Future Internet = Content + Services + Management", IEEE Communications Magazine, vol. 47, no. 7, Jul. 2009, pp. 27-33.
- C.Baladrón, "User-Centric Future Internet and Telecommunication Services", in: G. Tselentis, et. al. (eds.), Towards the Future Internet, IOS Press, 2009, pp. 217-226.
- 3. DG Information Society and Media Directorate, for Converged Networks and ServiceFuture Internet 2020, VISIONS OF AN INDUSTRY EXPERT GROUP, May 2009
- 4. G. Tselentis et al. (Eds.), Towards the Future Internet, IOS Press, 2009
- 5. Future Internet Towards Research Challenges 07 APR 2009, http://www.future-internet.eu/fileadmin/documents/prague\_documents/FI\_-\_From\_Functionalities2Challenges-09\_04\_08.pdf
- 6. Future Internet Initiatives, http://www.nessi-europe.com/Nessi/ (Networked European Software and sevices initiative)
- 7. Pavlou G., Towards a Service-aware Future Internet Architecture, Future Internet Assembly – Madrid, Dec 2008
- 8. A. Galis et al., "Management and Service-aware Networking Architectures (MANA) for Future Internet Position Paper: System Functions, Capabilities and Requirements", <u>http://www.future-internet.eu/home/future-internet-</u> assembly/prague-may-2009
- 9. Future Media Internet Architecture Reference Model, www.fi-nextmedia.eu /http://initiative.future-internet.eu/news/view/article/future-media-internet-architecture-reference-model-white-paper.html- 2011
- 10. Software-Defined Networking: The New Norm for Networks ONF White Paper April 13, 2012





- 11. D.Kennedy, Networks + Content, Eurescom, Bled 2008
- 12. The FP7 4WARD Project, http://www.4ward-project.eu/
- 13. Abramowicz, H. Introduction to BIRD WS, http://www.4ward-project.eu
- 14. M. Gritter and D. R. Cheriton. TRIAD: A New Next-Generation Internet Architecture. http://www-dsg.stanford.edu/triad/, July 2000.
- 15. A.Ghodsi, T.Koponen, B.Raghavan, S.Shenker, A.Singla, J.Wilcox, Information-Centric Networking: Seeing the Forest for the Trees, http://www.icsi.berkeley.edu/~barath/papers/icn-hotnets11.pdf
- 16. D. Kutscher, B.Ahlgren, H.Karl, B. Ohlman, S.Oueslati I.Solis, Information-Centric Networking— Dagstuhl Seminar — 2011 17. Niranth, NGSON Architecture and Service Oriented Networking,
- ttp://www.aisfi.ora/wa\_documents/G
- 18. J.Choi, Jinyoung Han, E.Cho, Ted Kwon, and Y.Choi, A Survey on Content-Oriented Networking for Efficient Content Delivery, IEEE Communications Magazine • March 2011
- 19. T. Koponen et al., "A Data-Oriented (and Beyond) Network Architecture," SIGCOMM '07, 2007, pp. 181-92
- 20. G. Pavlou, Information-Centric Networking: Overview, Current State and Key Challenges, http://www.ee.ucl.ac.uk/~gpavlou/, IEEE ISCC 2011 Keynote





- 21. Van Jacobson, D.K. Smetters, J.D. Thornton, M. F. Plass, NH. Briggs, R.L. Braynard, Networking Named Content, Palo Alto Research Center, Palo Alto, CA, October 2009
- 22. J. Choi, J. Han, E.Cho, T.Kwon, and Y.Choi "A Survey on Content-Oriented Networking for Efficient Content Delivery" IEEE Communications Magazine, March 2011pp. 121-127
- 23. L. M. Correia, An Academic View on Business and Regulatory Issues on the Future Internet, http://www.4ward-project.eu/
- 24. A. Mitra, M.Maheswaran, Wide-Area Content-based Routing Mechanism, International Parallel and Distributed Processing Symposium (IPDPS'03), http://www.computer.org/portal/web/csdl/doi/10.1109/IPDPS.2003.1213447
- 25. B.Subbiah Z.Afzal Uzmi Content Aware Networking in the Internet: Issues and Challenges, suraj.lums.edu.pk/~zartash/publications/2001-06-ICC-Content.pdf
- 26. A.Carzaniga, A. L. Wolf, Forwarding in a Content-Based Network, www.inf.usi.ch/carzaniga/papers/cw\_sigcomm03.pdf
- 27. P.Mell, T.Grance, The NIST Definition of Cloud Computing, Special Publication 800-145, Recommendations of the National Institute of Standards and Technology, 2011
- 28. F. Liu, J.Tong, J. Mao, R.Bohn, J.Messina, L. Badger and D. Leaf, Recommendations of the National Institute of Standards and Technology, NIST "Cloud Computing Reference Architecture", Special Publication 500-292, 2011
- 29. J.CHAWKI, "Cloud Computing Standards: Overview and ITU-T positioning", ITU Workshop on "Cloud Computing" (Tunis, Tunisia, 18-19 June 2012)
- 30. M. CARUGI Cloud Computing technology in Telecommunication ecosystems and recent ITU-T standardization efforts, International Workshop "Innovative research directions in the field of telecommunications in the world" within ITU-ZNIIS ITTC joint project 21-22 July 2011, Moscow, Russia





- 31. ITU-T FG Cloud TR Part 2: Functional requirements and reference architecture
- 32. Editors: L.M. Correia and L.Lundgren, Going 4WARD Newsletter, 4WARD-Architecture and Design for the Future Internet May 2009, Issue No. 4
- 33. Subharthi Paul, Jianli Pan, and Raj Jain, Architectures for the Future Networks and the Next Generation Internet: A Survey
- 34. C.Tsilopoulos, G.Xylomenos, "Supporting Diverse Traffic Types in Information Centric Networks", *ICN'11*, August 19, 2011, Toronto, Ontario, Canada.
- 35. E.Borcoci, D.Negru, C.Timmerer, "A Novel Architecture for Multimedia Distribution based on Content-Aware Networking" Proc. of CTRQ 2010, Athens, June 2010, pp. 162-168
- 36 http://www.ict-alicante.eu/
- 37. K.Cho, J. Choi, D.Ko, T.Kwon, Y.Choi, Content-Oriented Networking as a Future Internet Infrastructure: Concepts, Strengths, and Application Scenarios, http://mmlab.snu.ac.kr/~kdcho/publications/CON\_CFI2008.pdf.
- 38. S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd, and V. Jacobson. Adaptive Web Caching: Towards a New Global Caching Architecture. Computer Networks and ISDN Systems, 30(22-23), 1998.
- 39. Scalable and Adaptive Internet Solutions (SAIL), http://www.sail-project.eu/.
- 40. L. Popa, A. Ghodsi, and I. Stoica. HTTP as the Narrow Waist of the Future Internet. In Proc. of HotNets, 2010. http://bnrq.eecs.berkeley.edu/~randy/Courses/CS268.F08/papers/24\_diffusion.pdf





41. HP SDN/Openflow Technology Solutions: http://h17007.www1.hp.com/us/en/solutions/technology/openflow/index .aspx?jumpid=in\_r11652\_us/en/openflow-114x110/solutions/banner 42. SDN Controller Product Fact Sheet: http://h17007.www1.hp.com/docs/interopny/4AA4-3881ENW.PDF 43. SDN for cloud providers and enterprises: http://h17007.www1.hp.com/docs/interopny/4AA4-3872ENW.pdf 44. SDN Technical White Paper .hp.com/docs/interopnv/4AA4-3871ENW.pdf "OpenFlow: Enabling Innovation in Campus Networks" - Nick McKeown, Tom 45. Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, Jonathan Turner OpenFlow Switch Specification, V 1.3.0 (Wire Protocol 0x04) June 25, 2012 46.