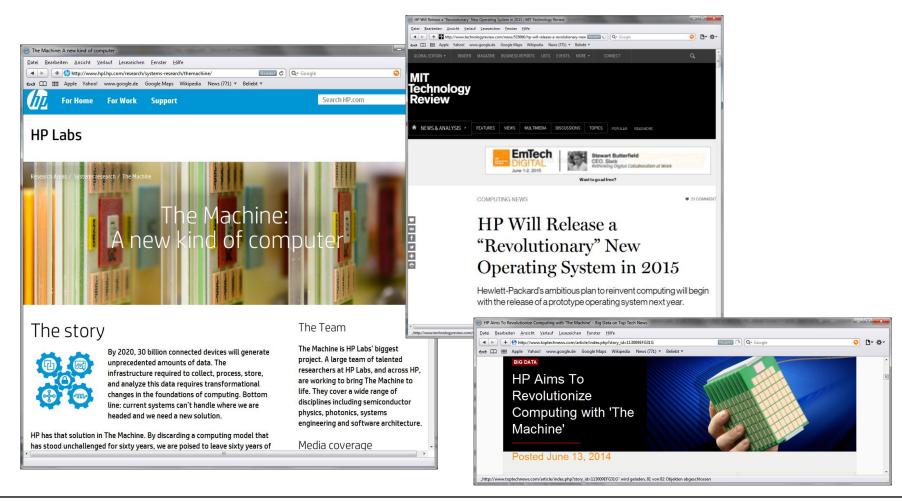

More than the Machine – **Using Memristors for Computing**



Dietmar Fey Department Computer Science -Chair for Computer Architecture Friedrich-Alexander-University Erlangen-Nürnberg

Who is aware of HP's Machine?

FRIEDRICH-ALEXANDER UNIVERSITY

Utilisation of different technologies

Electrons for compute

Electrons like to interact; easily moved; interaction needed for compute

+ lons for storage

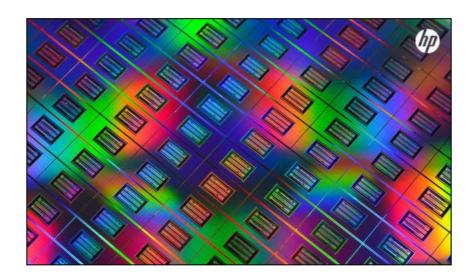
lons like to interact; stay put; good for storage

+ Photons to communicate

Photons don't like to interact or stay put; good for long-distances

Courtesy: Jouppi2011

Architecture


Source: P. Ranganathan, "Saving the world together, one server at a time..." ACACES 2011

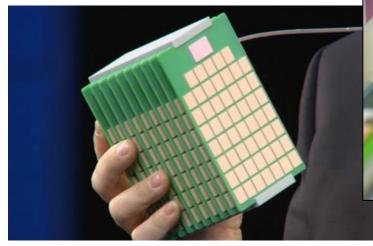
- Special purpose cores arbitrarily connected with pool of non-volatile memories – the memristors
 - Access times between 0.3 and 3 ns (< below 250 ns)
 - Mostly flat memory model
 - Paging and TLBs shall become obsolete
 - Vision: Cache becomes non-volatile

- What is the Machine?
 - HP will provide first products of a complete new computer architecture within the next two to three years

FUTURE COMPUTING 2015,

Nice, 23th March, 2015.

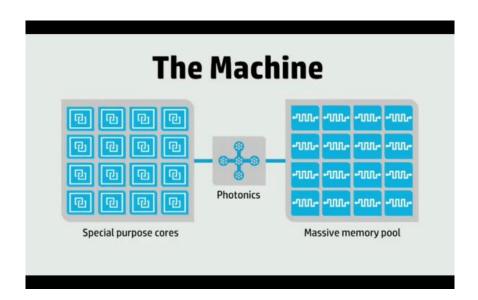
Slide 5

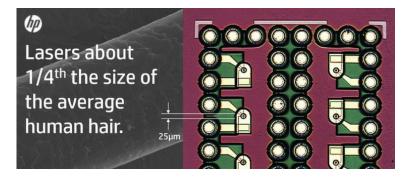

Key note "more than the Machine -

Using Memristors for Computing"

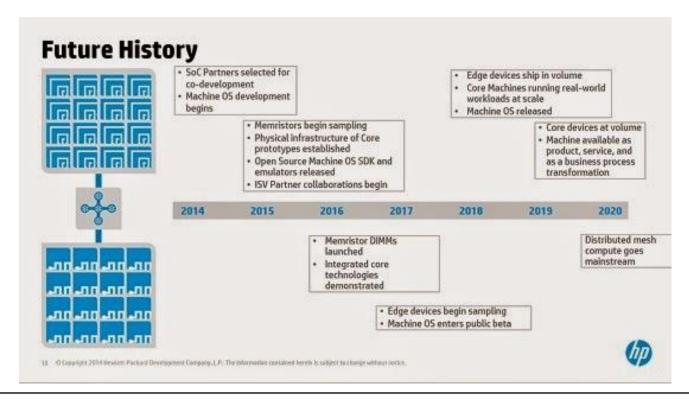
Up 160 racks based on memristors connected to a cluster

Data capacity up to 160 Petabyte

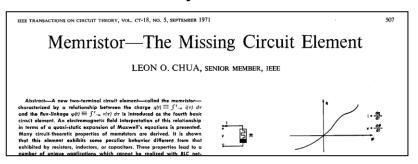

Size of a refrigerator



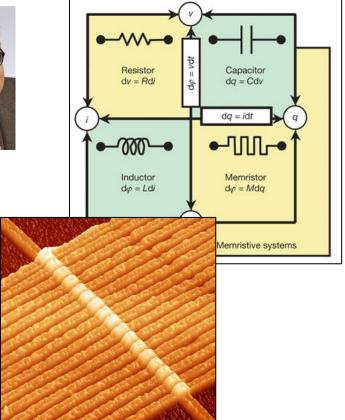
- Processor cores and memory connected via high speed fiber optics
 - Bandwidth of 6 Terabit / second


- Machine rack no server
 - Architecture flexible configurable from mobile device up to large computer

- Schedule for the revolution
 - New memory controllers
 - New OS for the Machine: Linux++ → Carbon


Outline

- Memristor technology
- Digital Boolean logic with memristors
- Ternary Computing using memristors
- Conclusion


- Memristor The missing 4th element
 - Predicated by Leon Chua in 1971

Experimentally found in 2008 at HP Lab

- Two principal kinds of memristors
 - Change resistivity of the device, e.g. due to ion transfer

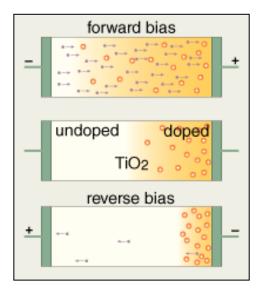
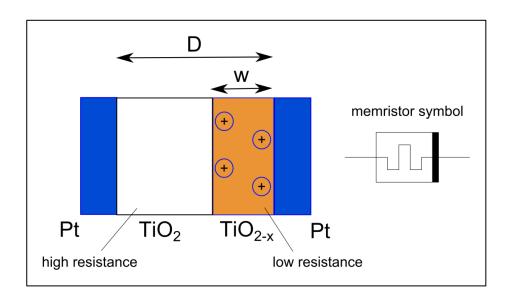
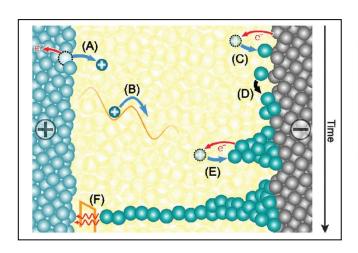
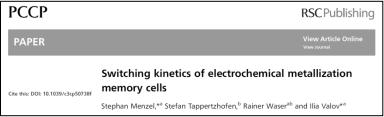



Image from http://bit-player.org/2012/ remember-the-memristor

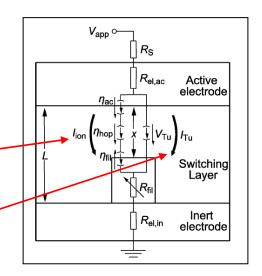

Total memristance = sum of resistances of the doped und undoped regions


$$R_{MEM}(x) = R_{ON} \cdot x + R_{OFF} \cdot (1 - x),$$

 $where \ x = \frac{w}{D} \ \epsilon \ (0, 1)$

ResitiveRAM (ReRAM): Growing of a conducting filament due to depositions of cations

Images and equations taken from



More complicated model than to the HP model before

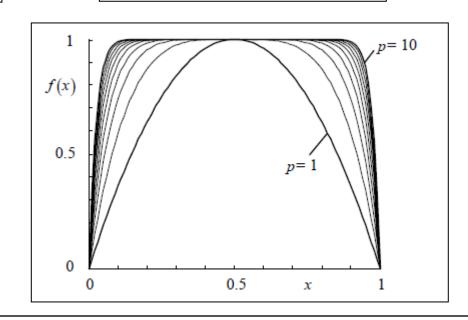
$$I_{\text{fil,SET}} = j_{0,\text{et}} A_{\text{fil}} \left(\exp\left(-\frac{\alpha e z}{k_{\text{B}} T} \eta_{\text{fil}}\right) - 1 \right)$$

FRIEDRICH-ALEXANDER UNIVERSITY

$$I_{\mathrm{Tu}} = C \frac{3\sqrt{2m_{\mathrm{eff}}\Delta W_0}}{2x} \left(\frac{e}{h}\right)^2 \exp\left(-\frac{4\pi x}{h}\sqrt{2m_{\mathrm{eff}}\Delta W_0}\right) A_{\mathrm{fil}} V_{\mathrm{Tu}}.$$

- Modelling memristor behaviour
 - Used in a SPICE simulation

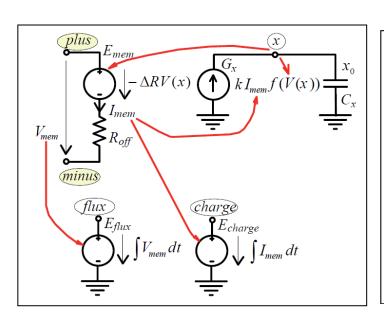
$$\frac{dx}{dt} = k i(t) f(x), \quad k = \frac{\mu_v R_{ON}}{D^2}$$


$$v(t) = R_{MEM}(w)i(t).$$

Using a model for a non-linear dopant drift (window function)

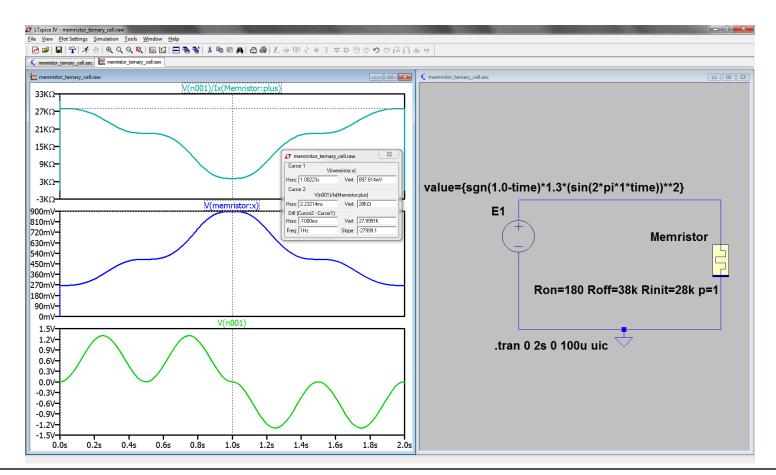
Zdeněk BIOLEK, Dalibor BIOLEK Viera BIOLKOVÁ SPICE Model of Memristor with Nonlinear Dopant Drift RADIOENGINEERING, VOL. 18, NO. 2, JUNE 2009

Used window function


$$f(x) = 1 - (2x - 1)^{2p}$$

- Modelling and simulating memristors
 - Use an equivalent SPICE circuit model
 - Simplifies execution of mixed-signal simulations

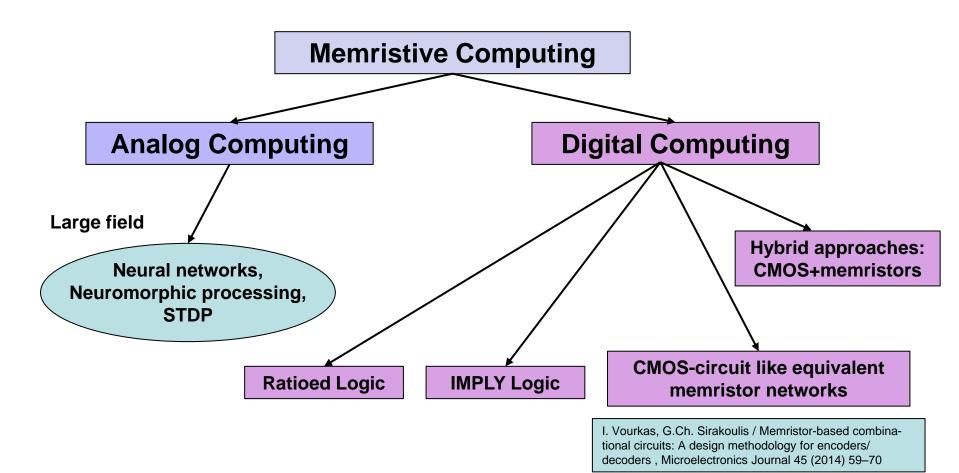
Zdeněk BIOLEK, Dalibor BIOLEK Viera BIOLKOVÁ SPICE Model of Memristor with Nonlinear Dopant Drift RADIOENGINEERING, VOL. 18, NO. 2, JUNE 2009



* HP Memristor SPICE Model * For Transient Analysis only	* RESISTIVE PORT OF THE MEMRISTOR * **********************************	
* created by Zdenek and Dalibor Biolek ************************************	Emem plus aux value={-I(Emem)*V(x)*(Roff-Ron)} Roff aux minus {Roff}	
* Ron, Roff - Resistance in ON / OFF States	*************	
* Rinit - Resistance at T=0 * D - Width of the thin film	*Flux computation* ***********************************	
* uv - Migration coefficient * p - Parameter of the WINDOW-function	Eflux flux 0 value={SDT(V(plus,minus))} ***********************************	
* for modeling nonlinear boundary conditions * x - W/D Ratio, W is the actual width	*Charge computation* ***********************************	
* of the doped area (from 0 to D)	Echarge charge 0 value={SDT(I(Emem))} ***********************************	
.SUBCKT memristor Plus Minus PARAMS: + Ron=1K Roff=100K Rinit=80K D=10N uv=10F p=1 ************************************	* WINDOW FUNCTIONS * FOR NONLINEAR DRIFT MODELING * **********************************	
* DIFFERENTIAL EQUATION MODELING * ***********************************	*window function, according to Joglekar .func $f(x,p)=\{1-(2*x-1)^{(2*p)}\}$	
Gx 0 x value={ $I(Emem)*uv*Ron/D^2*f(V(x),p)$ }	*proposed window function	
Cx x 0 1 IC={(Roff-Rinit)/(Roff-Ron)}	:.func $f(x,i,p)=\{1-(x-stp(-i))^{(2*p)}\}$	
Raux x 0 1T	.ENDS memristor	

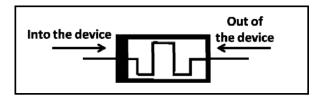
- Modelling multi-bit feature
 - Demonstration in a SPICE simulation

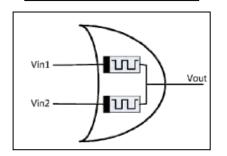
Architecture


Outline

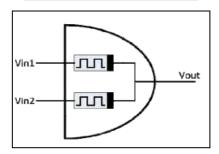
- Memristor technology
- Digital Boolean logic with memristors
- Ternary Computing using memristors
- Conclusion

Different branches of computing with memristors



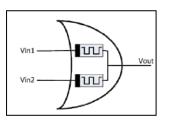

Ratioed Logic

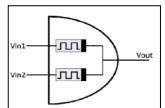
S. KVATINSKY, N. WALD, G. SATAT, A. KOLODNY, U.C. WEISER, G.E. FRIEDMAN MRL - Memristor Ratioed Logic 13th International Workshop on CNNA, 1:6, pp. 29-31, 2012.

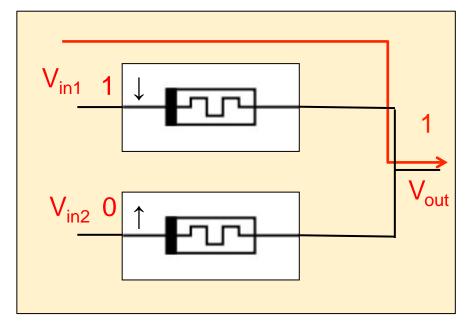

- Creating simple AND- and OR- gates by (mem)resistive networks
- Making following abstraction
 - Current flowing into the device: memristance \u00c4
 - Current flowing out of the device: memristance \

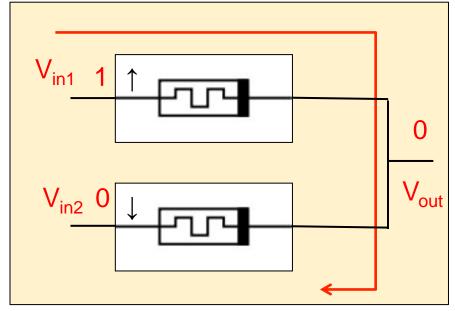
Structure of OR gate

Structure of AND gate

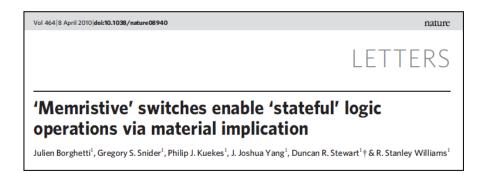


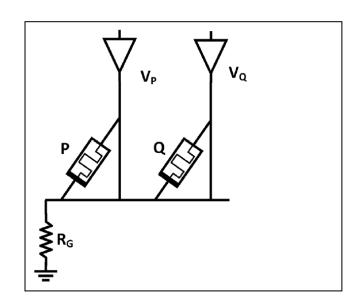

Architecture


 Example for OR and AND gate for input V_{in1} = 1 and V_{in2} = 0



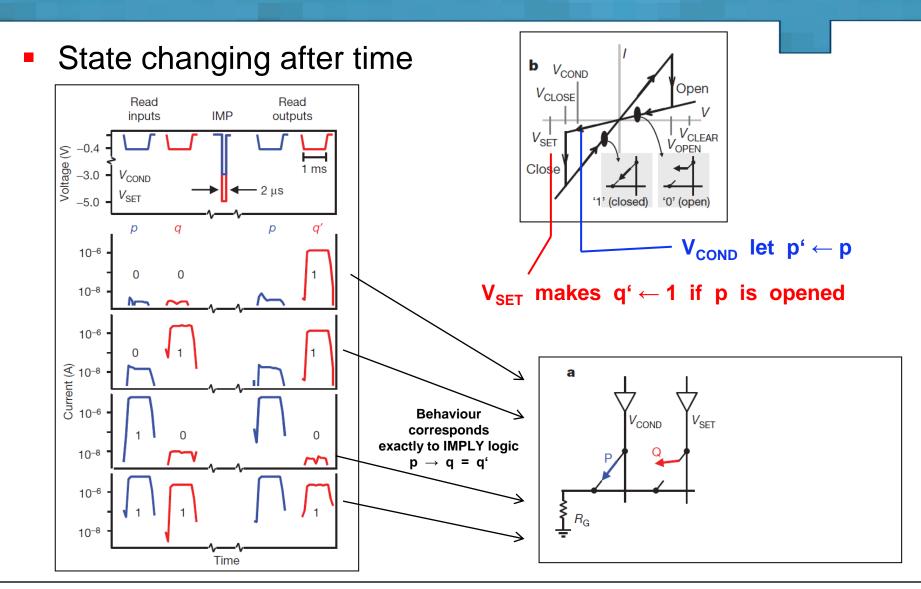
FRIEDRICH-ALEXANDER UNIVERSITY

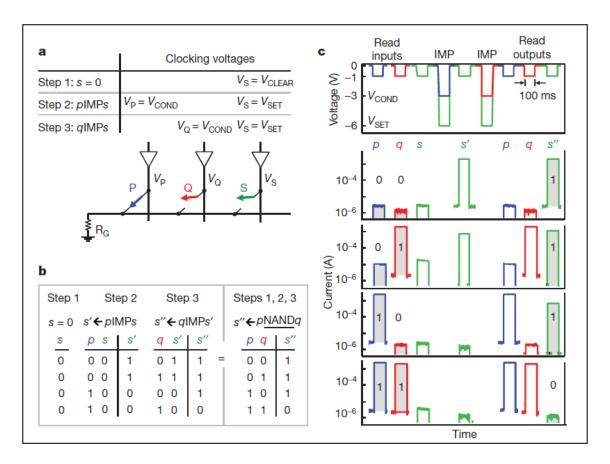




ERLANGEN-NÜRNBERG

IMPLY Logic


- Based on conditional toggling (kind of 3-phase logic)
 - Initializing certain states in memristors by input data
 - Apply constant voltages (V_{cond} and V_{set}) that possibly change states
 - Reading out the state (applying voltage that does not change states)



ERLANGEN-NÜRNBERG

FRIEDRICH-ALEXANDER UNIVERSITY

Can be expanded to NAND by subsequent IMP operations

Architecture

Outline

- Memristor technology
- Boolean logic with memristors
- Ternary Computing using memristors
- Conclusion

- Ternary computers
 - Since the days of Konrad Zuse and John v. Neumann
 - Binary computers
 - Ternary system
 - differentiates between 3 and not 2 states

http://ternary.3neko.ru/history_of_ternary.html

- 17th century: Caramuel y Lobkowitz
 - investigated number system with digits 0, 1, and 2

- 18th century: Abraham Gotthelf Kästner
 - each number weighted sum of multiples of 3
 - Weights were -1, 0, and +1

- Donald Knuth
 - Denoted that as balanced ternary system
- 1961: Avizienis [IRE Trans. Trans. Electron Computers]
 - Fast carry-free addition with signed-digit (SD) numbers
 - Difficult to implement in digital electronics
- 1988: Parhami
 - Binary SD number system
- 1958: Brousentsov

FRIEDRICH-ALEXANDER UNIVERSITY

SETUN ternary computer

ERLANGEN-NÜRNBERG

- May be a renaissance of ternary computers?
 - CMOS compatible,
 - fast,
 - Energy-poor,
 - multi-bit storing capable non-volatile memory cells

like memristors

Hybrid CMOS-memristor approach

 IOP Publishing
 Semiconductor Science and Technology

 Semicond. Sci. Technol. 29 (2014) 104008 (13pp)
 doi:10.1088/0268-1242/29/10/104008

Using the multi-bit feature of memristors for register files in signed-digit arithmetic units

Dietmar Fev

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department Computer Science 3, Chair for Computer Architecture, Martensstr. 3, 91054 Erlangen, Germany

Signed-digit number representation to base 2

$$w(a) = \sum_{i=0}^{n} a_i \cdot 2^i \qquad a = (a_{n-1}, ..., a_0), \ a_i \in \{-1, 0, 1\}$$

Example:
$$10\overline{1} = 1 \times 2^2 + 0 \times 2^1 - 1 \times 2^0 = 4 - 1 = 3$$
; $\overline{1} = -1$
 $1\overline{1}1 = 5 - 2 = 3$
 $011 = 2 + 1 = 3$

Used digital coding for signed digits (SD)

a ⁺	a⁻	SD
0	0	0
0	1	-1
1	0	1
1	1	Not used

Carry-free addition in O(1)

Binary addition

O(n)
Best case: log(n)

Signed digit addition

X _i	y _i	Z _i	C _{i+1}
0	0	0	0
0	1	-1	1
1	0	-1	1
1	1	0	1

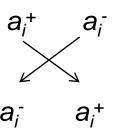
Ci	z _i	Si
0	0	0
0	-1	-1
1	0	1
1	-1	0

O(1)

ERLANGEN-NÜRNBERG

FRIEDRICH-ALEXANDER UNIVERSITY

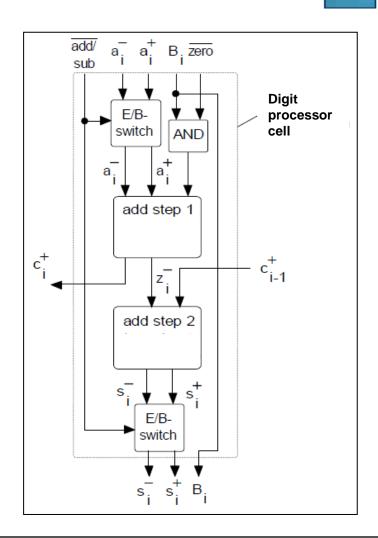
Addition / subtraction of (i) a SD number a and a binary number B and (ii) two SD numbers c and z


(i)
$$c_i^+ = a_i^+ \vee \left(B_i \wedge \overline{a_i^-} \right) \quad \land: \text{ and } \lor: \text{ or }$$
$$z_i^- = \left(a_i^+ \vee a_i^- \right) \oplus B_i \quad \oplus: \text{ exor}$$

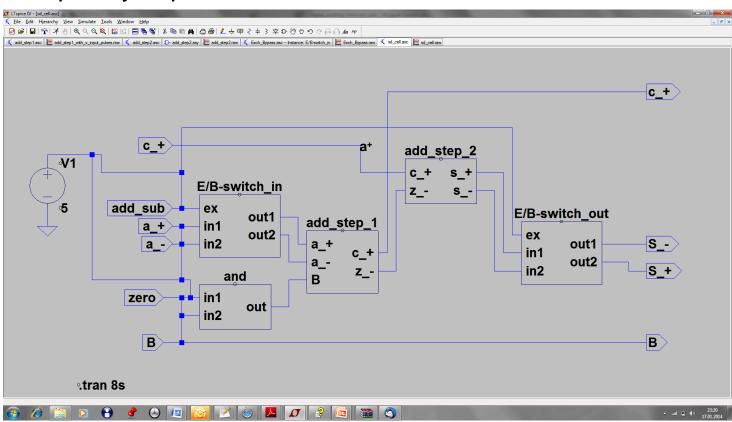
(ii)
$$s_{i}^{+} = \overline{z_{i}^{-}} \wedge c_{i-1}^{+}$$
 $s_{i}^{-} = \overline{c_{i-1}^{+}} \wedge z_{i}^{-}$

a – B: Subtraction can be simply reduced to addition

$$a - B = (-1) \cdot ((-1) \cdot a + B)$$

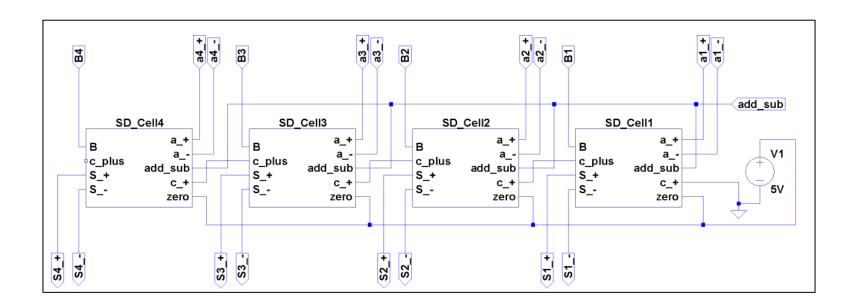

Negative complement simply by exchange positive and negative part

Architecture


Schematic of a digit processor cell

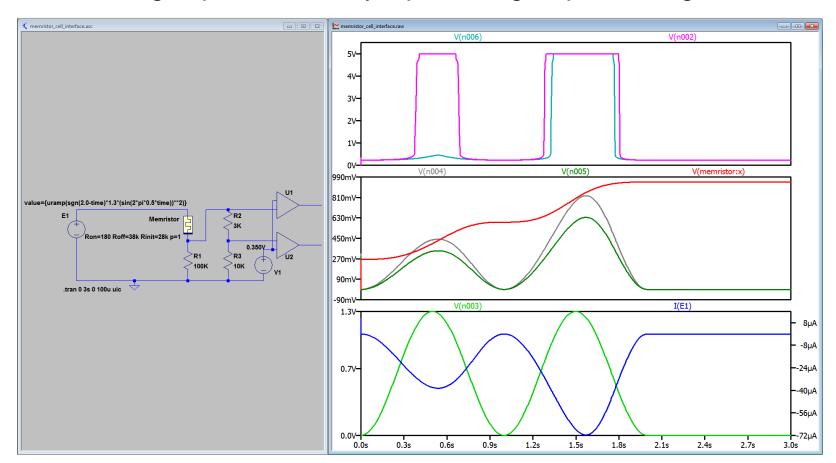
2 Signed-digit (SD) arithmetic

- Corresponding gate logic for an SD adder / subtractor cell
 - Completely implemented in SPICE

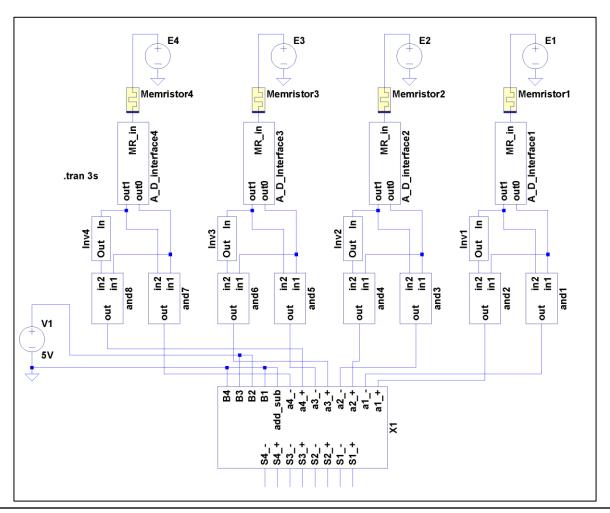


Architecture

- Schematic of a digit processor cell
 - Several cells are connected side-by-side to a row



Architecture


- Modelling multi-bit feature
 - Interfacing to produce binary input for digital processing circuit

Memristor-based SD arithmetic unit

Simulation result

Conclusion

- Possible computer architecture revolution happens?
- Core technology are NVM like memristors
- Proposal for first memristive Boolean logic gates
- Renaissance or break-through for ternary computers
- Outlook
 - First simple gates have to be realised
 - Devices have to be improved
 - From gates to complex systems

