

Distributed Smart Things
Giorgio Delzanno

Dipartimento di
Informatica
Bioinformatica
Robotica
Ingegneria dei
Sistemi
University of Genova, Italy

giorgio.delzanno@unige.it
Google/images

“When almost every object either
contains a computer or can have a

tab attached to it, obtaining
information will be trivial”

Mark Weiser, The Computer for the
Twenty-First Century, 1991

A World of Connected Things

A World of Connected Things

Automotive
Consumer
Generic Business
Vertical Business

The Internet of Things (IoT) is the network of physical
objects or "things" embedded with electronics, software,
sensors, and connectivity to enable objects to exchange
data with the manufacturer, operator and/or other
connected devices

From Wikipedia

Internet of Everything
Machine2Machine (M2M)
Web of Things (WoT)
Ubiquitous/Pervasive Computing

Definition

● Processing power
● Networking infrastructure and connectivity
● Low cost, secure devices
● Storage
● Secure and portable software

● Money!

Key Enablers

● Smart Cities
● Smart Home
● Data Centers
● Manufacturing/Industry
● Health/Independent Living
● Environment/Agriculture
● Automotive
● ...

Key Domains

● Connectivity/interoperability standards
● Operating Systems
● Topologies
● Security
● Software abstractions (API)
● Multi-tenant environments

● Open Source (hw/sw) to avoid fragmentation due
to in-house hw/sw/protocols

Standardization

Need of scalable processor architectures

● Microcontrollers
● Networking & storage
● Mobile and home solutions
● Data center infrastructures

Processing

Technology

● Connected security system
● Thermostats
● Cars
● Electronic appliances
● Lights in household and commercial
environments

● Alarm clocks
● Speaker systems

But how can we make things smart and
distributed?

Things

● Large number of nodes (motes)
● Limited power and cost
● Prone to failures
● Nodes may not have a global ID
(like IP addresses)

● Tight integration with sensing tasks
● Communication among motes and other devices

Wireless Sensor Networks (WSN)

● Sensing external phenomena
● Processing information
● Storing information
● Communicating with other motes or devices
● Energy harvesting (solar, vibration, …)

Mote (Sensor)

Mote: Typical architecture

● Storage (Flash)
● Microcontroller (EPROM, CPU)
● Lowpower standby/wakeup
● Sensor interface (ADC)
● RF Transceiver (Wireless communication)
● Wired net interface (USB, ...)

● Sensors can be data originator or data router

● Power conservation and powermanagement
at different levels are mandatory:

● Power-aware communication
● Low-power processing (and processors)
● Low-power sensing

● The “Idle listening problem” of radio communication:
Power consumption is the same when transmitting,
receiving, or listening for potential receptions

Power managemet

● Ultra low power controllers
● Dynamic power management of devices
● Components switch off after some idle time
● Energy aware OS
● Energy aware packet forwarding
● Energy aware wireless communication

Power aware computing

Texas Instrument MSP430 (more recently 32bits ARM
based MSP432) ultra-low-power microcontroller (MCU)
family

● SW managed flexible clock system with
von-Neumann architecture

● Interrupt handling
● SRAM/FRAM for real-time data capture
● Analog and digital peripherals
● Real-time clock that can operate without the CPU for

simpler data capture and manipulation.

Example: TI LP MCU Family

Ferroelectric Random Access Memory is a memory
technology that combines Flash and SRAM
● Non-volatile like Flash
● Offers fast and low power writes (100,000x read/write

without consuming extra battery power)
● Code and data security that is less vulnerable to

attackers than Flash/EEPROM
● Resistance to radiation and electromagnetic fields

Built from the ground up to preserve battery life

FRAM

IoT Operating Systems

● An open source OS for low-power wireless devices, written
in a dialect of the C language optimized for the memory
limits of sensor networks

● Component-based, components are connected to each
other using interfaces (for packet communication, routing,
sensing, actuation and storage)

● TinyOS is completely non-blocking:
● It has only one stack
● all I/O operations that last longer than a few hundred

microseconds are asynchronous and have a callback.

● A component can post a task, which the OS will schedule to
run later. Tasks are non-preemptive and run in FIFO order

TinyOS

● Open Source OS for low power/IoT devices

● Multitasking and a built-in TCP/IP stack

● Contiki only needs about 10 kilobytes of RAM and 30
kilobytes of ROM

● Based on protothread, a low-overhead mechanism for
concurrent programming

● Protothreads function are stackless, lightweight threads
providing a blocking context using minimal memory per
protothread (order of bytes)

ContikiOS

M2M
Communication

● Bluetooth technology is a standard for wireless
communication between phones and computers

● The Bluetooth link layer, operating in the 2.4-GHz
ISM band, was previously standardized as IEEE
802.15.1

● Bluetooth low energy: reduce power consumption,
allows any number of connected devices

Bluetooth (10 meters)

● Wi-Fi technology, based on the IEEE 802.11
standard, created for Internet connectivity and
natively integrated with the TCP/IP stack

● Wi-Fi networks operate in the ISM 2.4-GHz band
and in the 5-GHz band where more channels exist
and higher data rates are available.

● Range of 5-GHz radios inside buildings is shorter
compared to 2.4 GHz, 5 GHz is mainly used in
enterprise applications

● Wi-fi/Bluetooth:
Integrated in laptop, smartphones, tablet

WI-FI (100 meters)

IoT and WI-FI/Bluetooth

WI-FI/Bluetooth can be used to connect a
smart object to the Internet via a cellular
phone or a laptop

 Low Power
M2M

Communication

● Low power wireless data communications use the
2.4 GHz radio frequency spectrum under the
IEEE 802.15.4 standard, suitable for short range and
low data rates

● Unlike Wi-Fi and Bluetooth, low power consumption
operate for several years from a single battery
without any maintenance

● Updates to the standard have expanded the number
of sub-1 Ghz available channels

● Zigbee is an implementation of sub-1 Ghz protocols

IEEE 802.15.4

A low-cost, low-power, wireless network standard based on
the IEEE standard 802.15.4

Targeted at development of long battery life devices in
wireless control and monitoring applications

ZigBee minimizes the time the radio is on, so as to reduce
power use

It works with mesh/star/tree network topologies

ZigBee

ZigBee devices are of three types:

● ZigBee Coordinator (ZC): forms the root of the network and
bridge to other networks

● ZigBee Router (ZR): acts as an intermediate router, passing
on data from other devices

● ZigBee End Device (ZED): contains just enough
functionality to talk to the parent node (either the
Coordinator or a Router); it cannot relay data from other
devices.

● SED require less memory, less power consumption, less
expensive hardware than ZR/ZC

ZigBee Devices

ZigBee Topologies

ZC

ZR
ZR

ZED

ZC

ZR
ZR

ZED

ZR

ZR

Stars Meshes

In non-beacon-enabled networks ZRs have their receivers
continuously active, requiring more power supply

Ok for heterogeneous networks in which some devices
receive continuously, while others only transmit when an
external stimulus is detected

Example wireless light switch:

● ZC node at the lamp (connected to supply) receive constantly

● ZED at a battery-powered light switch that remains asleep until
the switch is thrown, then wakes up, sends a command to the
lamp, receives an acknowledgment, and returns to sleep.

ZigBee Networks

In beacon-enabled networks, the special network nodes
called ZRs transmit periodic beacons to confirm their
presence to other network nodes.

Nodes only need to be active while a beacon is being
transmitted

Nodes may sleep between beacons, thus lowering their duty
cycle and extending their battery life

ZigBee Networks

"The Internet Protocol could and
should be applied even to the

smallest devices"

6LoWPAN

"The Internet Protocol could and
should be applied even to the

smallest devices"

6LoWPAN

● 6LoWPAN = IPv6 over Low power Wireless Personal
Area Networks

● Encapsulation and header compression mechanisms
that allow IPv6 packets to be sent and received over
IEEE 802.15.4 based networks

● Based on Edge Routers that identify classes subnets

● Other protocols: ZigBee IP, Thread, Z-Wave

● TI CC430 SoCs = high performance RF transceiver
and MSP430 ULP MCU on one chip.

● Sub 1GHz radio communication between two or
more participants in a network

Example: TI LP RF-MCU Family

 Application Layer

New Protocols

● Recources are identified by URIs like
http://www.example.it:8080/sensors/?id=light

● They managed by servers and accessed synchronously
by clients via the HTTP protocol (request/response)

 REST Protocol

GET temperature

OK 200
38 Celsius

HTTP Client HTTP Server

REQUEST

REPLY

http://www.example.it:8080/sensors/?id=light

Constrained Application Protocol

(Coap)

Constrained Application Protocol (Coap), a REST-based,
UDP over IP protocol for constrained networks
● URI and content-type support
● Simple caching based on max-age
● Translates to HTTP via proxies
● Asynchronous transaction model
● UDP binding with reliability and multicast support
● Confirmable and non-confirmable messages

Additional features:
stop&wait, discovery, observation, block transfer mode

Coap

Coap

 Coap Protocol
Messages with 4 Byte Header
Version : Type : Token_length : Code : Message_ID

 Coap Protocol

CON
GET temperature

ACK
2.05 Content

38 Celsius

Client
Server

Messages with 4 Byte Header
Version : Type : Token_length : Code : Message_ID

 Coap Protocol

CON
GET temperature
Token xyz

ACK
2.05 Content
Token xyz
38 Celsius

Client
Server

Token

Messages with 4 Byte Header
Version : Type : Token_length : Code : Message_ID

Other messages

● Stop and Wait: repeat a request after a time-out in case
ACK is not coming back (max number of attempts, until total
duration exceeds max_transmit_time

● Observation to provide periodic requests: registration on
a resource, observation of current state, notification upon
updates

● Block Transfer Mode: fragmentation from the transport to
the application layer using sequences of confirmable
messages associated to blocks of large messages

● Discovery: special requests (“wellknown”) to discover
resources managed by a server (e.g. light, etc)

Other Features

Message Queue
Telemetry Transport

(MQTT)

● MQTT (Message Queue Telemetry Transport) is a light
weight messaging protocol built on top of the TCP/IP
protocol (instead of UDP as Coap)

● Designed for connections with remote locations where a
“small code footprint” is required and/or “network bandwidth
is limited”

● Publish-subscribe architecture based on WebSockets:
A message broker is responsible for distributing messages
to interested clients based on the topic of a message.

MQTT

MQTT

● Full-duplex communication over a single TCP connection

● Standardized way for the server to send content to the
browser without being solicited by the client, and allowing
for messages to be passed back and forth while keeping the
connection open.

● In this way a two-way (bi-directional) ongoing conversation
can take place between a browser and the server.

● WebSocket can be used for communication between drivers
of smart objects and applications that collect real-time data
(e.g. IoT platforms, data centers, data analytics tools)

WebSocket (RFC 6455)

Network Infrastructure
SDN for IoT

● Software Defined Networks (SDN) technology can be
applied to improve the efficiency and robustness of network
technology supporting the IoT stack

● SDN is based on programmable networks in which data and
control plane are separated: control is moved from switches
to a controller node, data are handled by every switch

● SDN is based on protocols like Openflow that regulate the
communication between controller and switch nodes

SDN

● Openflow controls packet traffic by using flow tables that
can be dynamically adapted to the current traffic state

● Flows are defined by informations of packets like IP/MAC
addresses, logic/physical port numbers, etc.

● Packets are managed according to the flow table entries
(forwarded, dropped, etc), a miss in a flow table is
redirected to the controller

● Controller can dynamically update the flow table entries, i.e.,
update the routing strategies

● Currently used in Data Center, often at the core of data
analytics of IoT technology

IoT/SDN

Software Abstractions
in the Cloud

● Sensed data are transmitted by smart objects
● To handle massive amounts of data we need to
move to the Cloud
● Connect devices to the cloud
● Store/retrieve data to the cloud
● Take decisions
● Visualize data
● Actuate from the cloud

Cloud-based IoT Platforms

IoT Platforms

● Oracle IoT
● IBM Blue Mix
● Samsung Artik
● Google Brillo/Weave
● Xively
● Thingworkx
● Fiware
● NodeJs
….an many others

IoT/ES Platforms

API services for IoT

● Stores data from devices and sensors
● Serve data to other entities
● Supports interoperability
● Security via HTTP and SSL
● Provides RESTful API for different languages
(Java, C++, …)

Xively

● Graphical IDE for developing IoT applications
● Selection of data streams
● Storage/data query
● Graphical widgets to visualize data
● Data analytics tools
● Customized event handlers (in Java)
● Marketplace for device SDK based on
WebSocket

Thingworx

Thingworx Architecture

● Interoperability through certification program for
developers

● Seamless and secure communication schemas
between devices both locally and through the cloud

● Built-in into Android

● Integrated into Google Play services
● Google Analytics
● App Engine for developing on the Cloud
● Google Maps API
● Android and Wearable API
● ...

Google Brillo/Weave (coming soon)

● Node.js is a platform based on the JavaScript runtime
for building fast, scalable network applications.

● Node.js uses an event-driven, non-blocking I/O model
suitable for data-intensive real-time applications that run
across distributed devices.

Node.js

● Node.js is a platform based on the JavaScript runtime
for building fast, scalable network applications.

● Node.js uses an event-driven, non-blocking I/O model
suitable for data-intensive real-time applications that run
across distributed devices.

Node.js

var sys = require("sys"),
my_http = require("http");
my_http.createServer(function(request,response){
 sys.puts("I got kicked");
 response.writeHeader(200, {"Content-Type": "text/plain"});
 response.write("Hello World");
 response.end();
}).listen(8080);
sys.puts("Server Running on 8080"); Web Server in Node.js

Open Problems

● The increase of “smart object dependability” augments
the Risk of critical attacks at all levels of the IoT stack
(e.g. to smart meters, pacemakers, automation
controllers, OS, network infrastructure, software, etc)

● Everything connected in the Internet means potential
loss of private data (e.g. electronic devices may reveal
custom habits or expose banking information, etc)

Security and Privacy

The IoT stack must be tightly integrated with all available
network security tools

● Secure booting to authenticate software installed on
devices, e.g., TTEs used in smartphone OS

● Device authentication
● SSH/DTLS for securing communication
● Firewalls
● Access control policies for ensuring data privacy

Security and privacy are still open problems

Ensure Security Bottom-up

IoT Applications

Top IoT Applications

Smart Parking: Monitoring of parking spaces availability in a city

Structural health: Monitoring of vibrations and material conditions
in buildings, bridges and historical monuments.

Noise Urban Maps: Sound monitoring in bar areas and centric
zones in real time.

Smartphone Detection: Detect iPhone and Android devices and
in general any device which works with WiFi or Bluetooth
interfaces.

Eletromagnetic Field Levels: Measurement of the energy
radiated by cell stations and and WiFi routers.

Top IoT Applications

Traffic Congestion: Monitoring of vehicles and pedestrian levels
to optimize driving and walking routes.

Smart Lighting: Intelligent and weather adaptive lighting in street
lights.

Waste Management: Detection of rubbish levels in containers to
optimize the trash collection routes.

Smart Roads: Intelligent Highways with warning messages and
diversions according to climate conditions and unexpected events
like accidents or traffic jams.

Some of our projects

● Android Applications that exploits iBeacon to
send notifications to, acquire data from users, to
profile clients/visitors (stores, museums, etc)

● Indoor positioning and navigation inside
museums/hospitals

● Social networks (whatsapp-like) based on Wi-Fi
Direct P2P networks

● Environmental Monitoring sensor network based
on low cost optical rain gauges (on going work)

iBeacon

iBeacon uses Bluetooth low energy proximity sensing to transmit
a universally unique identifier

The identifier can be used to determine the device's physical
location or trigger a location-based action on the device such as a
push notification.

One application is distributing messages at a specific Point of
Interest, for example a store

Similar to geopush technology based on GPS, but with a much
reduced impact on battery life and much extended precision (from
a few metres down to a few centimetres).

Flood Monitoring

Networks of Rain gauges for monitoring rainfall
intensity in the Monterosso municipality, an area
subjected to flash floods

In preparation, short presentation tomorrow
afternoon

Conclusions
● Internet of Things:

a collection of hardware, network technology,
software application to build innovative
applications by using connected devices

● Challenges:
– Standardization and Interoperability

– Programming platforms

– Performance and energy saving/harvesting

– Security, privacy, trust

– Socio-technical issues

– ...

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42
	Diapositiva 43
	Diapositiva 44
	Diapositiva 45
	Diapositiva 46
	Diapositiva 47
	Diapositiva 48
	Diapositiva 49
	Diapositiva 50
	Diapositiva 51
	Diapositiva 52
	Diapositiva 53
	Diapositiva 54
	Diapositiva 55
	Diapositiva 56
	Diapositiva 57
	Diapositiva 58
	Diapositiva 59
	Diapositiva 60
	Diapositiva 61
	Diapositiva 62
	Diapositiva 63
	Diapositiva 64
	Diapositiva 65
	Diapositiva 66
	Diapositiva 67
	Diapositiva 68
	Diapositiva 69
	Diapositiva 70
	Diapositiva 71
	Diapositiva 72

