

High Performance Computing Center Stuttgart

Panel 2:

Opportunities and Challenges in Simulation-Driven Research

Alexey Cheptsov

High Performance Computing Center Stuttgart (HLRS)

IARIA's ADVCOM/SEMAPRO Panel 11 October 2016

Panelists:

- Yoel Tenne, Ariel University, Israel
- Masaomi Kimura, Shibaura Institute of Technology, Japan
- Dejan Zupan, University of Ljubljana, Faculty of Civil and Geodetic Engineering, Slovenia
- Floriano Scioscia, Technical University of Bari, Italy
- Alexey Cheptsov, High Performance
 Computing Center Stuttgart, Germany

H L R S

Simulation – can it cover all our needs?

IARIA's ADVCOM/SEMAPRO Panel 11 October 2016

- Goals of the Panel:
 - Discuss the modern advances of the Simulation Technology for Science and Industry
 - Analyse the demands of the newest R&D trends on simulation
 - Discuss the emerging application requirements
 - Meet experts in and around the Simulation Technology

Problem Statement: BIG DATA (in context of Simulation)

MARIANSIADWOOM/SEMAPRO Panel

HPC Center Stuttgart

- First HPC system in Europe (Cray-2, 1986, 4 CPUs, 2GB RAM, approx. 2 GFLOPS)
- German national HPC infrastructure provider since 1995
- EU infrastructure provider since 2005

110M core hours delivered to industry in 2014

HAZEL HEHN (Cray XC40, Intel Haswell [Xeon E5-2680v3] CPU, Aries network)

- 7.712 nodes (24 cores)
- 7.4 PFLOPs performance
- 128 GB DDR4 RAM per node
- 10 PB Disc
- 3000 KW power consumption
- / 1.5M Euro

Evolution of Data Science

	$continuity: \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$		
	x-momentum: $u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} =$ y-momentum: $u \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} =$	$= -\frac{1}{\rho}\frac{\partial p}{\partial x} + \nu \left[\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right]$ $= -\frac{1}{\rho}\frac{\partial p}{\partial y} + \nu \left[\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}\right]$	
		f = figure; set(f, 'Color', [0 0 0]); sphere(200); axis vis3d off; h = findobj('Type', 'surface'); shading interp; set(h, 'FaceColor', [0.5 0.5 0.5]); light('Position', [-3 -1 3]); set(h, 'DiffuseStrength', 1.0); set(h, 'DiffuseStrength', 1.0); set(h, 'SpecularStrength', 1.0); set(h, 'SpecularExponent', 1); set(h, 'AmbientStrength', 0.25); set(h, 'BackFaceLighting', 'lit')	
experimental	theory	computation	data-driven
-1000	-100	-10	2016 Year, A.D.

-

IARIA's ADVCOM/SEMAPRO Panel

IARIA's ADVCOM/SEMAPRO Panel

UPS Study

- The world's largest shipping company
- Spending 1 Billion USD on Big Data research
- Very high operational costs
 - costs caused by delivery cars' fall-outs due to traffic accidents are the major point of concern!

Decision taken:

right-turn only where possible, regardless on the track's length

HLRS

Applications:

- Programming models
- Parallelisation
- Analysis
- Performance optimisation

IARIA

- Scalability
- Workflows

Infrastructure:

- Reconfigurability and "on demand" provision
- Distributed platforms
- Efficiency (also energy)
- Middleware (workflows, schedulers)

IARIA's ADVCOM/SEMAPRO Panel

11 October 2016

LRS

н

Masaomi Kimura @Data Eng. Lab, SIT

A challenge of simulation to understand languages

Masaomi Kimura Shibaura Institute of Technology, JAPAN

> DATA ANALYTICS 2016 October 9 - 13, 2016 - Venice, Italy

Masaomi Kimura @Data Eng. Lab, SIT

Text mining

We should have more insights into properties of languages to realize precise text mining

= My motivation for language simulation inspired by language emergence

The following is about the simulation of naming process...

Agent-base simulation

Masaomi Kimura @Data Eng. Lab, SIT

Agent-base simulation

Masaomi Kimura @Data Eng. Lab, SIT

Problems

We hope that this simulates a naming process. But ...

- How can we justify the simulation?
 - We do not have a fundamental model or evidences of the process but only the results (=natural languages).

Thank you for your attention

Masaomi Kimura masaomi@shibaura-it.ac.jp

High Performance Computing Center Stuttgart

Panel 2: Discussion Results

Opportunities and Challenges in Simulation-Driven Research

IARIA's ADVCOM/SEMAPRO Panel 11 Oc

- Simulation ≠ Algorithms + Software + Hardware
- + INTEGRATION
- Time for a better consolidation of the simulation techniques
- Common platform for validation of model
- Simulation as a service with a pluggable architecture
- Lack of basic knowledge of the investigated objects - leads to poor model representations
- Optimization is not only the mathematics

H L R S

TARTA

Panel

Opportunities and Challenges in Simulation-driven Research

Floriano Scioscia

Technical University of Bari, Bari (Italy)

The Tenth International Conference on Advances in Semantic Processing (SEMAPRO 2016) October 9-13, 2016 – Venice, Italy

Why simulation-driven research?

	More accurate than purely analytic models			Inspe individ subsy	du	al	
Prototy experimevaluat			"What-if" analysis			Ease of finding errors and performance bottlenecks	
	Growing availability computin power			Scala	bi	lity	

Ruta *et al.*, From the Physical Web to the Physical Semantic Web: knowledge discovery in the IoT 10th Int. Conf. on Mobile Ubiquitous Comp., Systems, Services and Technologies (UBICOMM 2016)

Ruta *et al.*, From the Physical Web to the Physical Semantic Web: knowledge discovery in the IoT 10th Int. Conf. on Mobile Ubiquitous Comp., Systems, Services and Technologies (UBICOMM 2016)

Types of simulations

Microscopic

- A single element of a complex system
- Validating behaviors
- Mainly useful for performance profiling and optimization

Mesoscopic

- A small set of homogeneous elements
- Validating interaction patterns: protocols, concurrency, resource management
- Mainly useful for use case tests

Macroscopic

- A large set of heterogeneous elements
- Qualitative and quantitative evaluation of emergent behaviors
- Mainly useful to anticipate or replace expensive prototype development

Some research experiences

ns2 Network Simulator modules

- o Bluetooth
- o ZigBee
- o IEEE 802.11

Radio-Frequency IDentification

- o IBM WebSphere RFID Tracking Kit
- o **Rifidi**

Automotive and vehicular networks

- o NCTuns
- o MATLAB and Simulink

. . .

$\sqrt{2}$ Simulations and reproducibility

Reproducibility of research is increasingly important

- o EU Horizon 2020
- o USA National Science Foundation and National Institute of Health
- Journal publishers

Simulations vs prototypes: easier

- o Storage
- Repackaging
- Virtualization (e.g. VMware or Docker)
- Retooling

Issues

- Data-intensive vs computation-intensive simulations
- Performance overhead
- Distributed simulations

Floriano Scioscia, Ph.D.

Information Systems Laboratory Politecnico di Bari, Italy

Tel.: +39 349 5629889 E-mail: floriano.scioscia@poliba.it Personal Webpage: http://sisinflab.poliba.it/scioscia

Projects Webpage: http://sisinflab.poliba.it/swottools Github repository: github.com/sisinflab-swot

Ruta et al., From the Physical Web to the Physical Semantic Web: knowledge discovery in the IoT 10th Int. Conf. on Mobile Ubiquitous Comp., Systems, Services and Technologies (UBICOMM 2016)

An Algorithm for Expensive Optimization Problems

Yoel TENNE Ariel University, Israel

ADVCOMP 2016-10, Venice, Italy

Talk format

- Introduction
- Problem description
- Proposed approach
- Performance analysis
- Summary

Simulation-driven design optimization

Laboratory experiment

Computer simulation

background problem proposal analysis summary

Simulation-driven design optimization

- •No analytic function expression ('Black-box' function).
- •'Expensive' function evaluations.
- •Challenging function features (e.g.,multiple optima).

background problem proposal analysis summary

Metamodel-assisted optimization

 Step 1: Replace the expensive function (the simulation) with a computationally cheaper approximation (a "metamodel" / "surrogate").

Some common variants:
Polynomials
Radial basis functions
Kriging
Neural networks

backgroundproblemproposalanalysissummary

Problem description

- Various metamodel variants exist, but the optimal variant is problem dependent and is typically unknown a-priori.
- To improve the prediction accuracy, *Ensembles* use multiple metamodels and combine their prediction into a single output.

proposal

analysis

summary

background

problem

Problem description

- Various metamodel variants exist, but the optimal variant is problem dependent and is typically unknown a-priori.
- To improve the prediction accuracy, *Ensembles* use multiple metamodels and combine their prediction into a single output.

Ensemble topology: which metamodels are incorporated,

proposal

analysis

summary

• Does the topology affect the prediction accuracy?.

problem

background

Numerical test

- Comparing 4 different topologies with 3 candidate metamodels: Kriging (K), RBF (R), RBF network (RN).
- Prediction accuracy estimated by the root mean square error.

	Ensemble topology					
Function	R+RN	R+K	RN+K	R+RN+K		
Ackley-5D	4.258e-01	3.702e-01	4.151e-01	2.967e-01		
Rastrigin-10D	1.223e+02	8.198e+01	1.312e+02	1.097e+02		
Rosenbrock-20D	1.791e+06	1.666e+06	1.648e+06	1.693e+06		
Schwefel 2.13-30D	1.882e+06	2.179e+06	2.343e+06	2.079e+06		

R:RBF, RN:RBF neural network, K:Kriging.

background

Results show a significant impact of the topology on accuracy.

proposal

analysis

summary

• Using an unsuitable ensemble can hamper the search.

problem

Existing approaches

- Dynamic selection of a *single* metamdoel (no ensemble): Gorrisen (2009), Tenne (2011).
- Using a *fixed* ensemble topology (no selection): Regis (2013), Tenne (2014), Muller (2014).

• In-search selection of the ensemble topology appears to be an open issue.

proposal

analysis

summary

problem

background

Existing approaches

- Dynamic selection of a single metamdoel (no ensemble): Gorisen (2009), Tenne (2011).
- Us Research goal: Re
 How to select an optimal ensemble topology without prior knowledge on the problem?

background **problem** proposal analysis summary
- Goal: Dynamic selection of the optimal ensemble topology.
- Step 1: estimating the prediction accuracy of individual metamodels with cross-validation.

- Goal: Dynamic selection of the optimal ensemble topology.
- Step 1: estimating the prediction accuracy of individual metamodels with cross-validation.

Evaluated vectors

background problem **proposal** analysis summary

- Goal: Dynamic selection of the optimal ensemble topology.
- Step 1: estimating the prediction accuracy of individual metamodels with cross-validation.

The root mean square error of the metamodel:

$$e_{j} = \sqrt{\frac{1}{l} \sum_{i=1}^{l} [m(x_{i}) - f(x_{i})]^{2}}$$

background problem **proposal** analysis summary

• Step 2: Generating the candidate ensemble topologies and corresponding predictions.

The ensemble prediction is defined as:

$$\epsilon(x) = \sum_{j=1}^{n} u_j m_j(x) , \quad u_j = \frac{1/e_j}{\sum_{j=1}^{n} 1/e_j}$$

weight metamodel

The weight (contribution) of each metamodel is inversely proportional to its prediction error (from Step 1).

background	problem	proposal	analysis	summary
------------	---------	----------	----------	---------

• Step 3: Estimating the prediction accuracy of a candidate ensemble topology with cross-validation:

The topology selected is that having the lowest prediction error.

background	problem	proposal	analysis	summary
------------	---------	----------	----------	---------

- Using an established set of mathematical test functions.
- Comparing the proposed algorithm to:
 - Variant 1 (V1): Only RBF metamodel, no ensemble.
 - Variant 2 (V2): Fixed ensemble RBF+Kriging+RBF network
 - EA-PS, EI-CMA-ES: Reference algorithms from the literature.
- Limit of 200 evaluations of the true function. 30 repeats.
- This setup was used to check the contribution of the dynamic topology selection.

		Proposed	V1	V2	EA–PS	EI-CMA-ES
		Proposed	V I	V2	EA-P5	EI-CMA-ES
Ackley-10	Mean SD Median Min(best) Max(worst) α	7.705e+00 8.359e+00 2.314e+00 9.007e-02 1.836e+01	1.455e+01 4.649e+00 1.592e+01 2.383e+00 1.825e+01	1.356e+01 8.051e+00 1.908e+01 3.457e+00 2.048e+01 0.01	5.241e+00 5.590e-01 5.408e+00 4.098e+00 6.010e+00	1.796e+01 1.529e+00 1.797e+01 1.443e+01 1.988e+01 0.01
Griewank-10	Mean SD Median Min(best) Max(worst) α	1.304e-01 1.851e-01 7.747e-02 9.350e-03 6.505e-01	1.972e-01 1.714e-01 1.294e-01 3.569e-02 5.661e-01	2.078e-01 2.213e-01 1.357e-01 2.290e-02 7.601e-01	9.579e-01 1.076e-01 9.862e-01 7.146e-01 1.046e+00 0.01	9.338e-01 2.435e-01 1.007e+00 2.441e-01 1.050e+00 0.01
Rastrigin-5	Mean SD Median Min(best) Max(worst) α	6.377e+00 3.728e+00 5.980e+00 1.997e+00 1.195e+01	9.360e+00 7.852e+00 7.464e+00 1.005e+00 2.787e+01	8.018e+00 8.349e+00 4.298e+00 3.369e+00 3.076e+01	7.631e+00 4.811e+00 7.226e+00 1.621e+00 1.456e+01	2.131e+01 4.890e+00 2.139e+01 1.353e+01 3.006e+01 0.01
Rosenbrock-20	Mean SD Median Min(best) Max(worst) α	5.839e+02 2.094e+02 5.956e+02 2.143e+02 8.905e+02	1.031e+03 5.818e+02 8.665e+02 5.483e+02 2.517e+03 0.01	8.186e+02 3.823e+02 7.932e+02 3.078e+02 1.521e+03	8.435e+02 3.012e+02 7.782e+02 4.676e+02 1.439e+03 0.05	3.967e+03 9.406e+02 3.685e+03 3.141e+03 6.144e+03 0.01

The proposed algorithm with dynamic topology selection consistently outperformed the other algorithms.

background problem proposal **analysis** summary

• Using an engineering problem of airfoil shape optimization.

• Using an engineering problem of airfoil shape optimization.

2 cases: 6 or 20 design variables per airfoil.
Limit of 200 simulation calls.
Benchmarking against the same algorithms as before.

		Proposed	V1	V2	EA-PS	EI-CMA-ES
6D	Mean	-8.360e+01	-8.048e+01	-8.203e+01	-7.799e+01	-7.231e+01
	SD	1.320e+01	1.659e+01	2.261e+01	2.250e+00	7.159e-01
	Median	-7.567e+01	-7.533e+01	-7.554e+01	-7.831e+01	-7.264e+01
	Min(best)	-1.068e+02	-1.268e+02	-1.436e+02	-8.036e+01	-7.290e+01
	Max(worst)	-7.488e+01	-7.174e+01	-6.405e+01	-7.238e+01	-7.099e+01
	α					0.01
20D	Mean	-3.247e+00	-3.202e+00	-3.239e+00	-3.174e+00	-3.212e+00
	SD	6.421e-02	6.991e-02	8.932e-02	8.887e-02	9.405e-02
	Median	-3.231e+00	-3.208e+00	-3.206e+00	-3.142e+00	-3.202e+00
	Min(best)	-3.354e+00	-3.303e+00	-3.414e+00	-3.348e+00	-3.327e+00
	Max(worst)	-3.151e+00	-3.098e+00	-3.134e+00	-3.070e+00	-3.036e+00
	α				0.05	

•The proposed algorithm outperformed the other algorithms also in these test problems.

background problem proposal **analysis** summary

Ensemble updates

• Was the dynamic selection important? how often was the topology updated?

R:RBF, K:Kriging, RN: RBF network

- The optimal topology varied between problems and during the search itself.
- No single topology was the overall optimal.
- The dynamic selection was essential to using an optimal topology.

background problem proposal **analysis** summary

Summary

- Ensembles are used to improve the prediction accuracy in simulation-driven optimization.
- This study has proposed a **dynamic topology selection** approach.
- Analysis shows:

a) an improved search effectiveness, andb) that the optimal topology varied dynamically during the search, and so there is no single optimal topology.

Thank you

Yoel Tenne Chi-Keong Goh (Eds.)
 311
 ADAPTATION, LEARNING, AND

 0
 0PTI/AIZATION

Computational Intelligence in Expensive Optimization Problems

🖄 Springer

Yoel Tenne Chi-Keong Goh (Eds.)

Computational Intelligence in Optimization

≋О

🖉 Springer

Applications and Implementations

Dejan Zupan

Evaluation of Model Parameters: Experiences from Characteristic Value Determination

Panel on "Opportunities and Challenges in Simulation-driven Research"

ADVCOMP 2016

Venice, Italy October 9 – 13, 2016

*University of Ljubljana, Faculty of Civil and Geodetic Engineering, Slovenia

• Simulations are a powerful tool when used properly.

- Simulations are a powerful tool when used properly.
- Quantities we are dealing with are often random variables.

- Simulations are a powerful tool when used properly.
- Quantities we are dealing with are often random variables.
- We can use simulations to evaluate the parameters of a model.

- Simulations are a powerful tool when used properly.
- Quantities we are dealing with are often random variables.
- We can use simulations to evaluate the parameters of a model.
- They can be used for confirmation of analytical solutions.

- Simulations are a powerful tool when used properly.
- Quantities we are dealing with are often random variables.
- We can use simulations to evaluate the parameters of a model.
- They can be used for confirmation of analytical solutions.

• Let X be a random variable with known CDF $F_X(x)$. The characteristic value of X is such value x_{α} , that the probability of X being less than x_{α} equals α :

$$P[X < x_{\alpha}] = F_X(x_{\alpha}) = \alpha \quad \longrightarrow \quad x_{\alpha} = F_X^{-1}(\alpha).$$

• Let X be a random variable with known CDF $F_X(x)$. The characteristic value of X is such value x_{α} , that the probability of X being less than x_{α} equals α :

$$P[X < x_{\alpha}] = F_X(x_{\alpha}) = \alpha \quad \longrightarrow \quad x_{\alpha} = F_X^{-1}(\alpha).$$

• It is common to many practical problems that the parameters of the distribution are not known.

• Let X be a random variable with known CDF $F_X(x)$. The characteristic value of X is such value x_{α} , that the probability of X being less than x_{α} equals α :

$$P[X < x_{\alpha}] = F_X(x_{\alpha}) = \alpha \quad \longrightarrow \quad x_{\alpha} = F_X^{-1}(\alpha).$$

- It is common to many practical problems that the parameters of the distribution are not known.
- The parameters are estimated from the random sample. The characteristic value estimate is itself a random variable, here denoted by \hat{X}_{α} .

• Let X be a random variable with known CDF $F_X(x)$. The characteristic value of X is such value x_{α} , that the probability of X being less than x_{α} equals α :

$$P[X < x_{\alpha}] = F_X(x_{\alpha}) = \alpha \quad \longrightarrow \quad x_{\alpha} = F_X^{-1}(\alpha).$$

- It is common to many practical problems that the parameters of the distribution are not known.
- The parameters are estimated from the random sample. The characteristic value estimate is itself a random variable, here denoted by \hat{X}_{α} .
- For any previously prescribed confidence interval α_{λ} a characteristic value estimate, $\hat{X}_{\alpha,\lambda}$, should be determined, such that

$$P[\hat{X}_{\alpha,\lambda} < x_{\alpha}] = 1 - \alpha_{\lambda}.$$

 For normal random variables analytical solution can be obtained: ZUPAN, SRPČIČ, TURK: Characteristic value determination from small samples. Structural safety, 2007, vol. 29, no. 4, p. 268-278.

- For normal random variables analytical solution can be obtained: ZUPAN, SRPČIČ, TURK: Characteristic value determination from small samples. Structural safety, 2007, vol. 29, no. 4, p. 268-278.
- Confirmation of analytical results.

- For normal random variables analytical solution can be obtained: ZUPAN, SRPČIČ, TURK: Characteristic value determination from small samples. Structural safety, 2007, vol. 29, no. 4, p. 268-278.
- Confirmation of analytical results.
- Results for other distributions.

- For normal random variables analytical solution can be obtained: ZUPAN, SRPČIČ, TURK: Characteristic value determination from small samples. Structural safety, 2007, vol. 29, no. 4, p. 268-278.
- Confirmation of analytical results.
- Results for other distributions.
- Numerical solution using simulations.

- For normal random variables analytical solution can be obtained: ZUPAN, SRPČIČ, TURK: Characteristic value determination from small samples. Structural safety, 2007, vol. 29, no. 4, p. 268-278.
- Confirmation of analytical results.
- Results for other distributions.
- Numerical solution using simulations.
- The characteristic value estimate is based on one-parameter formula:

$$\hat{X}_{\alpha,\lambda} = \bar{X} + \lambda S_X^*.$$

Algorithm

Assumption of a distribution and its exact parameters.

Evaluation of exact characteristic value x_{α} .

Estimation of initial values for λ .

Start of bisection iterations.

Loop over simulations.

Generation of a random sample according to the chosen distribution.

Mean and standard deviation estimation from the sample.

Calculation of the estimate $\hat{X}_{\alpha,\lambda}$.

End loop.

Estimation of probability
$$P\left[\hat{X}_{\alpha,\lambda} < x_{\alpha}\right]$$

Update the value of λ .

Continue bisection iterations until $\left| P \left[\hat{X}_{\alpha,\lambda} < x_{\alpha} \right] - (1 - \alpha_{\lambda}) \right| \ge \delta$.

• Computational demands.

- Computational demands.
- Acceptance of the results.

- Computational demands.
- Acceptance of the results.
- European building standards.

- Computational demands.
- Acceptance of the results.
- European building standards.