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� Simulation – can it cover all our needs?
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� Goals of the Panel:
� Discuss the modern advances of the 

Simulation Technology for Science and 
Industry

� Analyse the demands of the newest R&D 
trends on simulation

� Discuss the emerging application 
requirements

� Meet experts in and around the Simulation 
Technology
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Problem Statement:
BIG DATA

(in context of Simulation)

M9 Technical Review Meeting 5
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- 7.712 nodes (24 cores)
- 7.4 PFLOPs performance
- 128 GB DDR4 RAM per node
- 10 PB Disc
- 3000 KW power consumption 
/ 1.5M Euro

HAZEL HEHN (Cray XC40, Intel Haswell [Xeon E5-2680v3] CPU, Aries 
network)

� HPC Center Stuttgart
� First HPC system in Europe (Cray-2, 1986, 4 CPUs, 2GB 

RAM, approx. 2 GFLOPS)

� German national HPC infrastructure provider since 1995

� EU infrastructure provider since 2005

� 110M core hours delivered to industry in 2014
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experimental theory

-1000 Year, A.D.-100 2016

computation data-driven

-10

� Evolution of Data Science
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Arithmetical
Complexity

Volume

Structure

Data-Intensive
Sciences

Traditional Computational 
Sciences

static dynamic

Evolution of 
Computational
Applications

Locality
spatially and 

temporally local
no or little

fit into memory
do not fit 

into memory

High Precision 
Arithmetic

variable precision 
or integer based
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structured data ontologies

2000 Year, A.D.2005 2010

linked data Semantic Web

2009
2010
2012

Size of the
data

universe

0,8 ZByte (1.000.000.000 TB = 2^21 Byte)
1,3 ZByte tens of ZBytes

� Let’s try the Semantics!
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� The world’s largest shipping company

� Spending 1 Billion USD on Big Data research

� Very high operational costs

� costs caused by delivery cars’ fall-outs due to traffic 
accidents are the major point of concern!

� Decision taken:

right-turn only where possible,

regardless on the track’s length

� UPS Study
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Applications:

• Programming models 
• Parallelisation
• Analysis
• Performance optimisation
• Scalability
• Workflows

Infrastructure:

• Reconfigurability and 
“on demand” provision

• Distributed platforms
• Efficiency (also energy)
• Middleware (workflows,

schedulers)

HPCCloud Data Center
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A challenge of simulation
to understand languages

Masaomi Kimura

Shibaura Institute of Technology, JAPAN

DATA ANALYTICS 2016
October 9 - 13, 2016 - Venice, Italy

Masaomi Kimura @Data Eng. Lab, SIT



Text mining

• My original interest. I am a newbie to simulations…

• Target data are sets of documents.

• A typical objective is extraction of common opinions.

• We assume the same word is used in the same
meaning, but …

2

“We need a new system to improve our work.”

Masaomi Kimura @Data Eng. Lab, SIT

We should have
more insights into properties of languages

to realize precise text mining

= My motivation for language simulation
inspired by language emergence

The following is about
the simulation of naming process…



Agent-base simulation
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[1,0,0…]

[0,1,1…]

Agent 1

Agent 2

[1,0,1…]

[0,1,0…]

Characteristic values
(in real value vector space)

Names
(in discrete value space)

V1 is [0,1,1…]

Masaomi Kimura @Data Eng. Lab, SIT

No!

Teach/Learn
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[1,0,0…]

Agent 1

Agent 2

[1,0,1…]

[0,1,0…]

Characteristic values
(in real value vector space)

Names
(in discrete value space)

[1,0,0…]

Teach/Learn

Masaomi Kimura @Data Eng. Lab, SIT



Agent-base simulation
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[1,0,0…]

Agent 1

Agent 2

[1,0,0…]

[1,0,0…]

[1,0,0…]

Simulations show that they reach consensus
and that a “name” is a label of a cluster.

(Details will be reported in the near future)

Masaomi Kimura @Data Eng. Lab, SIT



Problems

We hope that this simulates a naming process.

But …

• How can we justify the simulation?
• We do not have a fundamental model or evidences of

the process but only the results (=natural languages).

Masaomi Kimura @Data Eng. Lab, SIT



Thank you for your attention

Masaomi Kimura

masaomi@shibaura-it.ac.jp
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Opportunities and Challenges in Simulation-
Driven Research
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� Wrap-Up:
� Simulation ≠ Algorithms + Software + 

Hardware

� + INTEGRATION

� Time for a better consolidation of the 
simulation techniques

� Common platform for validation of model

� Simulation as a service with a pluggable 
architecture

� Lack of basic knowledge of the investigated 
objects - leads to poor model representations

� Optimization is not only the mathematics
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Opportunities and Challenges in 
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Floriano Scioscia
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The Tenth International Conference on Advances 
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Why simulation-driven research?

More accurate 

than purely 

analytic models

Inspecting 

individual 

subsystems

Prototype-less 

experimental 

evaluation

Scalability

Ease of finding 

errors and

performance 

bottlenecks

Growing

availability of 

computing 

power

“What-if” 

analysis
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Types of simulations

Microscopic
o A single element of a complex system

o Validating behaviors

o Mainly useful for performance profiling and optimization

Mesoscopic
o A small set of homogeneous elements

o Validating interaction patterns: protocols, concurrency, 
resource management

o Mainly useful for use case tests

Macroscopic
o A large set of heterogeneous elements

o Qualitative and quantitative evaluation of emergent 
behaviors

o Mainly useful to anticipate or replace expensive prototype
development
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Some research experiences

ns2 Network Simulator modules
o Bluetooth

o ZigBee

o IEEE 802.11

Radio-Frequency IDentification
o IBM WebSphere RFID Tracking Kit

o Rifidi

Automotive and vehicular networks
o NCTuns

o MATLAB and Simulink

…
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Simulations and reproducibility

Reproducibility of research is increasingly important
o EU Horizon 2020

o USA National Science Foundation and National Institute of Health

o Journal publishers

Simulations vs prototypes: easier
o Storage

o Repackaging

o Virtualization (e.g. VMware or Docker)

o Retooling

Issues
o Data-intensive vs computation-intensive simulations

o Performance overhead

o Distributed simulations
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Contact

Floriano Scioscia, Ph.D.

Information Systems Laboratory

Politecnico di Bari, Italy

Tel.: +39 349 5629889

E-mail: floriano.scioscia@poliba.it

Personal Webpage: http://sisinflab.poliba.it/scioscia

Projects Webpage: http://sisinflab.poliba.it/swottools

Github repository: github.com/sisinflab-swot



An Algorithm for Expensive Optimization 
Problems

Yoel TENNE
Ariel University, Israel

ADVCOMP 2016-10, Venice, Italy



Talk format

● Introduction
● Problem description
● Proposed approach 
● Performance analysis
● Summary
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Laboratory experiment Computer simulation



 

background problem proposal analysis summary

Simulation-driven design optimization

Optimization
algorithm

Simulation
(analysis code)

Candidate design

Objective value
Laboratory experiment Computer simulation

●No analytic function expression ('Black-box' function).

●'Expensive' function evaluations.

●Challenging function features (e.g.,multiple optima).



 

background problem proposal analysis summary

Metamodel-assisted optimization

● Step 1: Replace the expensive function (the simulation) with a 
computationally cheaper approximation (a “metamodel” / “surrogate”).

●Some common variants:
●Polynomials
●Radial basis functions
●Kriging
●Neural networks



 

background problem proposal analysis summary

Problem description

● Various metamodel variants exist, but the optimal variant is 
problem dependent and is typically unknown a-priori.

● To improve the prediction accuracy, Ensembles use multiple 
metamodels and combine their prediction into a single output.

Metamodel 1

Metamodel 2

Metamodel 3

∑ Ensemble prediction
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Problem description

● Various metamodel variants exist, but the optimal variant is 
problem dependent and is typically unknown a-priori.

● To improve the prediction accuracy, Ensembles use multiple 
metamodels and combine their prediction into a single output.

● Ensemble topology: which metamodels are incorporated,

● Does the topology affect the prediction accuracy?.

Metamodel 1

Metamodel 2

Metamodel 3

∑ Ensemble prediction



 

background problem proposal analysis summary

Numerical test

● Comparing 4 different topologies with 3 candidate metamodels: 
Kriging (K), RBF (R), RBF network (RN).

● Prediction accuracy estimated by the root mean square error.

● Results show a significant impact of the topology on accuracy.

● Using an unsuitable ensemble can hamper the search.



 

problembackground proposal analysis summary

Existing approaches

● Dynamic selection of a single metamdoel (no  
ensemble):
Gorrisen (2009), Tenne (2011).

● Using a fixed ensemble topology (no selection):

Regis (2013), Tenne (2014), Muller (2014).

● In-search selection of the ensemble topology 
appears to be an open issue.
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Existing approaches

● Dynamic selection of a single metamdoel (no  
ensemble):
Gorrisen (2009), Tenne (2011).

● Using a fixed ensemble topology (no selection):

Regis (2013), Tenne (2014), Muller (2014).

● In-search selection of the ensemble topology 
appears to be an open issue.

Research goal:
 

How to select an optimal ensemble 
topology without prior knowledge 

on the problem?
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Proposed framework

● Goal: Dynamic selection of the optimal ensemble topology.

● Step 1: estimating the prediction accuracy of individual 
metamodels with cross-validation.
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Proposed framework

● Goal: Dynamic selection of the optimal ensemble topology.

● Step 1: estimating the prediction accuracy of individual 
metamodels with cross-validation.

Evaluated vectors
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Proposed framework

Training a
metamodel

Testing the 
prediction accuracy

e j=√ 1
l
∑i=1

l
[m(x i)−f (xi)]

2
The root mean square error of the metamodel:

Evaluated vectors Training set Testing set

● Goal: Dynamic selection of the optimal ensemble topology.

● Step 1: estimating the prediction accuracy of individual 
metamodels with cross-validation.



 

proposalproblembackground analysis summary

Proposed framework

● Step 2: Generating the candidate ensemble topologies and 
corresponding predictions.

The ensemble prediction is defined as:

The weight (contribution) of each metamodel is inversely proportional 
to its prediction error (from Step 1).

ϵ(x)=∑ j=1

n
u jm j (x)  ,     u j=

1 /e j

∑ j=1

n
1 /e j

weight metamodel



 

proposalproblembackground analysis summary

Proposed framework

● Step 3: Estimating the prediction accuracy of a candidate 
ensemble topology with cross-validation:

Training the
metamodels 

and ensemble
Testing the ensemble
prediction accuracy

ê j=√ 1
l
∑i=1

l
[ϵ(x)−f (x)]2The root mean square error of topology  j:

Evaluated vectors Training set Testing set

The topology selected is that having the lowest prediction error.
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Proposed framework

Initialization

Topology selection

Optimization step using selected
topology

Evaluating promising solutions



 

analysisproblem proposalbackground summary

Performance Analysis 1

● Using an established set of mathematical test functions.

● Comparing the proposed algorithm to:

● Variant 1 (V1): Only RBF metamodel,  no ensemble.
● Variant 2 (V2): Fixed ensemble RBF+Kriging+RBF network
● EA-PS, EI-CMA-ES: Reference algorithms from the 

literature.
● Limit of 200 evaluations of the true function. 30 repeats.

● This setup was used to check the contribution of the dynamic 
topology selection.
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Performance Analysis 1

The proposed algorithm with dynamic topology selection 
consistently outperformed the other algorithms.
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Performance Analysis 2

● Using an engineering problem of airfoil shape optimization.
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Performance Analysis 2

● Using an engineering problem of airfoil shape optimization.

●2 cases: 6 or 20 design variables per airfoil.
●Limit of 200 simulation calls.
●Benchmarking against the same algorithms as before.
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Performance Analysis 2

●The proposed algorithm outperformed the other algorithms 
also in these test problems.



 

analysisproblem proposalbackground summary

Ensemble updates

● Was the dynamic selection important? how often was the topology updated?

● The optimal topology varied  between problems and during the search itself.

● No single topology was the overall optimal.

● The dynamic selection was essential to using an optimal topology.

R:RBF, K:Kriging, RN: RBF network



 

analysisproblem proposalbackground summary

Summary

● Ensembles are used to improve the prediction accuracy in 
simulation-driven optimization.

● This study has proposed a dynamic topology selection 
approach.

● Analysis shows: 
a) an improved search effectiveness, and 
b) that the optimal topology varied dynamically during the 
search, and so there is no single optimal topology.



 

Thank you
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Simulations in research

• Simulations are a powerful tool when used properly.

• Quantities we are dealing with are often random variables.

• We can use simulations to evaluate the parameters of a model.

• They can be used for confirmation of analytical solutions.
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Charateristic value

• Let X be a random variable with known CDF FX(x). The characteristic
value of X is such value xα , that the probability of X being less than xα
equals α:

P [X < xα] = FX(xα) = α −→ xα = F−1X (α).
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Charateristic value

• Let X be a random variable with known CDF FX(x). The characteristic
value of X is such value xα , that the probability of X being less than xα
equals α:

P [X < xα] = FX(xα) = α −→ xα = F−1X (α).

• It is common to many practical problems that the parameters of the distri-
bution are not known.

• The parameters are estimated from the random sample. The characteris-
tic value estimate is itself a random variable, here denoted by X̂α .

• For any previously prescribed confidence interval αλ a characteristic value
estimate, X̂α,λ, should be determined, such that

P [X̂α,λ < xα] = 1− αλ.
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Solution

• For normal random variables analytical solution can be obtained:
ZUPAN, SRPČIČ, TURK: Characteristic value determination from small
samples. Structural safety, 2007, vol. 29, no. 4, p. 268-278.
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Solution

• For normal random variables analytical solution can be obtained:
ZUPAN, SRPČIČ, TURK: Characteristic value determination from small
samples. Structural safety, 2007, vol. 29, no. 4, p. 268-278.

• Confirmation of analytical results.

• Results for other distributions.

• Numerical solution using simulations.

• The characteristic value estimate is based on one-parameter formula:

X̂α,λ = X̄ + λS∗X .
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Algorithm

Assumption of a distribution and its exact parameters.

Evaluation of exact characteristic value xα.

Estimation of initial values for λ.

Start of bisection iterations.

Loop over simulations.

Generation of a random sample according to the chosen distribution.

Mean and standard deviation estimation from the sample.

Calculation of the estimate X̂α,λ.

End loop.

Estimation of probability P
[
X̂α,λ < xα

]
.

Update the value of λ.

Continue bisection iterations until
∣∣∣P [X̂α,λ < xα

]
− (1− αλ)

∣∣∣ ≥ δ.

Presentation at ADVCOMP 2016 Page 4
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Challenges

• Computational demands.

• Acceptance of the results.

• European building standards.
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