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What are complex systems?

"A system comprised of a (usually large) number of (usually
strongly) interacting entities, processes, or agents, the
understanding of which requires the development, or the use of,
new scientific tools, nonlinear models, out-of equilibrium
descriptions and computer simulations." [Advances in Complex
Systems Journal]

"A system that can be analyzed into many components having
relatively many relations among them, so that the behavior of
each component depends on the behavior of others. [Herbert
Simon]*

"A system that involves numerous interacting agents whose
aggregate behaviors are to be understood. Such aggregate
activity is nonlinear, hence it cannot simply be derived from
summation of individual components behavior." [Jerome Singer]



Our Research: Complex Systems
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Artificial Neural Networks

Machine-learning algorithms that identify data patterns and perform
decision making in a manner imitating cognitive functionality

N/

** ‘Learning’ (analogous to problem solving) is:
v’ adaptive - knowledge is altered, updated, & stored (via weights)

v' iterative - examples to generalizations

“* ‘Universal approximators’ — can discover & reproduce any
(linear / non-linear) trend given enough data & computational
(processing) capability

v No expert knowledge required

v" Few (if any)‘formal’ assumptions - i.e. Gaussian requirements, etc.

*» Disadvantage - (superficially ? ?) lack a declarative knowledge
structure

v'a ‘Black Box’ (i.e. no global equation)



Biological Analogy

e Brain Neuron

e Artificial neuron

 Set of processing w/

elements (PEs) and

connections (weights)

with adjustable 'L”apy‘;tr
strengths




Modeling Approach

Early Days: Interested in “ Model Accuracy”

Data Collection

Accuracy Attribute
Occam’s Razor Behavior




Modeling Approach

Desired Output

Databasc
(Pre-Process Inputs
& Output)

Fori=1to N (# of models investigated)

Initialize ANN Estimated Output
(#Neurons, #Layers, ANN Model
Weights, etc..)

I'raining Algorithm

Sclect Best Performing

i ANNN ,
Final ANN Model ANN



Early Project: Stock Market Model

Accuracy of predicting market turns —not necessarily

Closing Prices Of Stock
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‘Paradigms’ of Scientific Discovery *

*¢* Empirical - describing natural phenomena

=l initiated, a thousand years ago

¢ Theoretical - models, ‘laws’ & generalizations

> initiated, the last few hundred years

¢ Computational - simulating complex phenomena
=] initiated, the last few decades




KNOWLEDGE EXTRACTION defined:

IS the creation of knowledge from
structured (relational databases, XML)
and unstructured (text, documents,
Images) sources
[https://en.wikipedia.org/wiki/]

N Black Box

Knowledge Extraction
Symbolic Rules

Artificial Neural Network Knowledge Based
Model
Define Initial

Sensitivity Analysis Mechanistic Model

Knowledge based from
1% Principles
“True Process”




Environmental Modeling & Knowledge Extraction

Neuse River: & ES 1st ATTEMPT:
N

 |ncluded all attributes collected
e Sensitivity about the means

- Eamlico
Sound

 Found many limitations to

Croatan current method

National
Forest -

How are we to explain a more

complex situation?

Variable Behavior

Network Output(s) for Varied Input Saturates
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Dreissena polymorpha
(Actual slze Iy 15 mm)

Zebra Mussels & Water Quality Assessment (1990 - 1996)
Oceans & Human Health Initiative (2003 - 2005)

Inner Outer
Max / Mean
Depth (m) 14.0/5.09 40.5/13.66
Surface
Area (km?) 1,554 1,217
Volume (km3) 7.91 16.63
Retention
time (d) 58 - River mouth to

Lake proper

Multiple Stressor Program (2008 - 2010)
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Predicting Saginaw Bay Chl a (1991-1996)
MLP - 1 Hidden Layer of 4 Processing Elements

Hydrological Predictors: °C, Sechhi, Ky, Cl, NO3, NH,, SRP, TP, Si0,, PSiO,, DOC,
POC

T . 451
45 @® Training (n = 586) 1:1 0 ® Test (n =244)
r=0.79 (p <0.0001) r=0.89 (p < 0.0001)
361 MSE/NMSE=10.69/0.39 361 MSE/NMSE =8.08/0.25

@ Cross Validation (n = 146)
r=0.85 (p <0.0001)

Modeled Chlorophyll a (ng L?)

Measured Chlorophyll a (ng L?)

27 MSE / NMSE = 4.89/ 0.27 27 1
187 o
®
9 1 9
0 ] . | | | 0
0 9 18 27 36 45 0 9 18 27 36 45
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Existing Knowledge Extraction Tools

Neural Interpretation Diagram

Decomposition method to visual

Determine significance of input variables

Based on the magnitude of interconnecting weights

Connected Weights

Decomposition method that uses weights of an ANN to
determine:

Input Significance to model

Nodes Significance to ANN
Procedure

Calculate “connected weights” for all possible paths of the network

15



Network Interpretive Diagram* Single Parameter Sensitivity

(of a trained network) Analysis (+ 1 SD)
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Developed More Complex Networks

Saginaw Bay CHL a (2008-2010) - Hydrological & Meteorological Predictors
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Developed New Approaches to Observe Interactions

Multi-Variable Sensitivity Analysis (circa 2006 !)
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Decision Trees

Symbolic Knowledge Extraction

Technique
Data points Most commonly used decision
T tree induction algorithm — C4.5
“go 0" (Quinlan)

Recursive partitioning of the
data

Drawback: Amount of data
reaching each node decreases
with the depth of the tree

*  Whichone? T

Al

Alternative: TREPAN




TREPAN+ Methodologies

TREPAN

If data<min. sample size,

= Membership Query to
Oracle

Oracle

Provide network
weights and
architecture to
TREPAN

Generate a ‘Black

Box’ Model (Neural Build a human
Network) comprehensible model:

Assign Class Label to =77 Decision Tree'
Membership ﬂuy
——___-
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Knowledge Extraction for Wi-Fi

Utilized Techniques:
« TREPAN+
« Sensitivity

MTRBSCBS <=

3.8833

MTTFBSCBS <=
3.1083

MTTFBS
<=2.3500

Very

Sensitivity About the Mean

180000 -
160000
140000
120000
100000 —
80000
60000
40000
20000

0 1 1

Sensitivity

Input Name

O MTTFBS

O MTTFBSC

O MTTFBSCBS
OMTTFMSC

O MTTFMSCBSC
OMTTFDB

O MTRBS

0O MTRBSC

O MTRBSCBS
O MTRMSC

O MTRMSCBSC
O MTRDB

MTRBSCBS <=

4.7667

MTTFBSCBS <=
1.8833

/

MTTFBS <=
1.8083

MTTFBSCBS
<=2.3750

MTTFBSCBS <=
1.4417




Needed More Understanding: Variable Interactions

Multiple Variable Interactions while looking at various states!

Our drive to Mechanistic Model: Grey Box => WHITE BOX

Inputs White Box Model Output

Complexity




Different Project: Crude Oil Impact
Used New Set of Tools:

Limitations to Sensitivity:
2 ANNSs were created for “high” and “low” %Crude Oils

Sensitive results were very different

% Crude Oil <=20% Crude Oil >=50%




PC2-17.1%

> TDP, NOs, NH,

TMP, ATMP, WndDir <

Revised Look: Saginaw Bay 2008 - 2010

PCA — Hydrological / Meteorological Variables Mean [Chlorophyll a]
Monthly Means

Saginaw _ , Lake
10 River Huron
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— T Means with the same letter are
=i not different (Dunn’s Method);
-1 10.5 1 p > 0.05
5T @)
-
N
©
=/ 0
c
o
0T @)
-
®)
— 357
@
0 7] 0.0
-10 - Upper Mid Lower Upper Lower
TP, TSS, PON, POC + > SECCHI Inner Bay Outer Bay
PC1-223%
Inner vs Outer Bay:
Mann-Whitney U Statistic = 559
M Inner Bay @ Outer Bay T oon- b =<000l <
- : : SEVARCE b
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Introduced New Visualizations: Multi-variable Impact on Chlorophyll a

CHL as a function of TP & TEMP

o
-
bﬂ125 .
< 100 "
S 75 ". B 0 g Chla L
— . 25
= . 50
= == 75
= 1 100
.E 125
O N
=]
=
[<P]
=
S
=

CHL a% =1.98 + (0.03*TP)
adj r> = 0.99, Fit SE = 0.41, Fstat = 29857.36

In CHL a = 2.23 + (0.002*TEMP?)
adj r> =0.99, Fit SE = 1.03, Fstat = 6323.88

CHL a = -862.16 + (473.88*WndSpd aye.s) - (103.65*WndSpd aye.+2)

+ (12.14*WndSpd ae.52) - (0.82*WndSpd aye.s?) + (0.03*WndSpd .

5°) - (0.001*WndSpdaye.3®) + (5.80e-6*WndSpdaye-3')
adj r>=0.99, Fit SE = 0.13, Fstat = 13,127.67

Modeled Chlorophyll a ([ g L%

90

72

54

36
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Half-Maximal Abundance
Concentrations / Conditions:

TP, =518 gL
TEMPs, = 22.6 °C
WndSpd_3_50 =18.0 km hr!

— . /
. —
0 45 90 135 180 225
Total Phosphorus (m, ug L'l)
11.5 15.3 19.1 22.9 26.7 30.5
Temperature (@, °C)
13.0 15.8 18.7 21.6 24.5 27.4

WndSpd,_, , (A, km hr')
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Delineating TP Thresholds for Saginaw Bay CHL a (2008-2010)

(Taking Into Account the Interactions and/or Synergisms of Co-Limiting Nutrients)

CHL a as a function of TP & NOs-N CHL a as a function of TP & NHas-N
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Development of Grey Box Technique

[CHLa] = wy- f(X1,y1) +T1, T1 = Wyo-f(X2,¥2) + I, Generalized Equation

ry = W3-f(X3,¥3) + 13, and Iy = Wn-f(Xn,Yn) -+ Tn fo_r 2 variable interaction
with output (CHL a)

g & Cross-Valdation
S a2

¥
MAE = L™
o

D CHL @ (Standard Deviation) 00




lterations : ANNs Models

Multiple ANN models
CHL = |[CHL orarion -+ [CHL iteration. T ——_— .
{CHLZ}GW?”BUK |[r ﬂ]]st iteration [ |ﬂ]znd itera * Utl'lZIﬂg 2 VarlableS at a
nth iteration n . .
time to predict Output

lterations: Additive Models Finalized Combined Model

B
(0.41*1.16 + 5.0E17* [TEMP5392+57, 1701y

Iteration 1
| {'u 45+ (0.72 — 0.01°pH + 0.115°TURB)

- | - -
! (1 - 1.08%log,,pH + ¢*log,,TURB) /

‘ ""n 12;;?0.5'.-'! + 12.69%10g,CURSPD - 12.37*log,,PAR)"

L (1 - 13.43*CURSPD + 0.01"PAR) )

(8.01 — 1.98%log,,CURDIR — 2.69*log,, WNDSPD) )
(1 — 0.01*CURDIR + 0.03*WNDSPD)

133 +2.25

. ["'ﬂ.ﬂﬁ'

lterations 1, 2 & 3
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30 40 1 11 20

Cumulative Iterative Chlorophyll @ (mg L)

Rotated Grey-Box CHLa (img L")

- -

Measured Chlorophyll a (mg L) Measured CHL a (mg L)




Global Sensitivity

e Sensitivity about Means
— Local Sensitivity

— Does not consider variable interactions as
states change

* Developed Global Sensitivity

— Looks at how variables interact as their states
change!

31



Global Sensitivity

Normal Curve

Standard Deviation Each Variable has its own
distribution of values (States)

Impact of Correlation on State
Behavior

Secchi TSS TP TDP SRP NH4 NO3 CL Sol_Si POC DOC
1.57 -0.7/0 -0.98 -048 -0.25 0.02 -0.02 -0.57 -0.16 -1.16 -0.80
053 -0.67 -059 -0.04 -014 009 041 -002 -040 -0.79 0.04
-0.17 -0.08 -0.16 -0.11 -0.09 -0.09 -0.04 -0.14 -0.09 -0.26 -0.14
-040 -0.02 0.14 0.13 0.04 -0.26 -0.24 -0.16 039 0.35 -0.06
-068 050 031 -037 -006 -049 -035 -0.06 0.20 0.87 0.15

-0./75 064 158 097 0.72 -0.08 -064 089 031 142 0.42



Global Variation Across States

Network Output(s) for Varied Input TP

Significant difference in

Y =0.1604x1: Global versus Local
o Sensitivity
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Varied Input TP

Network Output(s) for Varied Input Secchi

y=-7.938In(x) + 12.678
R?*=0.927
Chl a

m SBSecchi

i .
s P ——— T

Varied Input Secchi



Global (State Based) versus
Local (Means) Sensitivity

Sensitivity: State Based versus Means

® Chl_a 1 std dev

H 5B Chl_a 1 std dev
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Modeled Microcystis (Logy, [ m? L)
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)

oo
1

»
1

I
L

LLake Erie Microcystis (Continuous MLP); Hydrological & Meteorological
HLs: 32-15-14-10-1, TanH/Mom

@ Training; r = 0.94, n = 171,
NMSE = 0.12, ME = (.88

Cross Validation; r = 0.64, n = 43,
NMSE = 0.64, ME = 0.38

s Training & Cross-Validation

[HEN
N
)

[HEN
o
1

[l Test;r=0.71,n="71,
NMSE = 0.55, ME = 0.45

- Test Application

4 6 8 10 12

Measured Microcystis (Logq, (m? L)

Modeled Microcystis (Logyo [ m3 L)

1.00 -

0.75 -

0.50 -

0.25 -

State-Based Global Sensitivity;
Min-Max (Optimal 12 Predictors)
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Data Issues

Big
Data

’

* Big: Random reduction
« Little: Synthetic (SMOTE)

Little  |Imbalance Data
Data e O’s
** Ecology & ‘Big’ Data:
5 5 THE PROMISE
Not all ‘Big Data’ created equally: ANDCHALLCENGE

volume, variety, velocity, volatility, veracity
No longer ‘... your daddy’s database ...

S| ‘Big’ Data = ‘Big’ Information = ‘Big’ Value
Does ‘Big’ Data ensure ‘Big’ Science
f)




Imbalanced Datasets

e Definition: under or over representation of a class
in @ dataset is considered as an in a

dataset.
* ||ll-balanced, unbalanced, uneven

»
L
"‘
) 1
= =g

(

0-15 15-30 30-45 45-060 0-15 15-30 30-45 45-00

Balanced Dataset Imbalanced Dataset 37



Graphic showing change under/over
Sampling

Concrete Output data
Histogram

}l I I A ® Frequency
) c ~ -

; " \ » \ \,\

J .-

.I

Saginaw Bay output
Histogram

: Under Sarhpling | | Over.Sampling Under Sampling Over Sampling
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SMOTE’s Informed Oversampling
Procedure

Smote: Synthetic
Minority Over-
sampling Technique

... But what if there
IS @ majority sample
Nearby?

@,
.// \ s
O
. - Minority sample O . Majority sample
¢ Synthetic sample




Count Frequency

Lake Erie (2009-2011) Chlorophyll a & Microcystis Distributions

World Health Organization Guidance Values for Acute Health Effects of
Cyanobacteria-Dominated Waters *

__‘Low’Risk
1 (<10 [g LY

I
| ‘Moderate’ Risk
2

| (>10-50 (g LY

8.7%

‘High’ Risk
(>50 (g L1

n=364

K-S Dist. = 0.19, p < 0.001
SWilk W= 0.78, p < 0.001

& 18 ..
C 03 0.3
TR EINISTST I T LSS
a]
Chlorophylla (ug L)

A ‘two-step’ approach
(akin to GLIMMs)

Absence Presence
A A _ ‘
Continuous
[ k ‘
120 - n=380 |
K-S Dist. = 0.45, p < 0.001 |
100 4 SWilk W= 0.09, p < 0.001 25.8
‘High’ Risk
‘Moderate’Risk . 3
2 7 N (> 108 cells L)
S 80 {192% (>2x10"cells L) |
=]
g' 16 1I
£ 60 - : |
e ‘Low’ Risk I |
= (<2x107cells L?) ‘Very High’
- Bl I Risk
- | (>10%cells L)
20+
0 -

S 8 3 & 8 & & 8
N N N

2 & & 8
$ S %S $ & 8§
-1

Microcystis (pm3 L)

* after Chorus & Bartram 1999



_ake Erie Microcystis (Presence-Absence MLP); Hydrological & Meteorological
HLs: 29-15-10-5-1

Concentrations / Conditions for
Occurrence Likelihood of Microcystis:

Training &
Cross Validation ~ . ~ .
corrected via
SMOTE >
) E 10 7] Y y
Absent o
130 10 = :
§ 0.8 -
Present ¢
8 151 o ' , X
2 0.6 1 Presence
Accuracy (% correct) - 93.98 o — — AN
% Absent Correct — 94.20 ToE 22k 5 04 - < Absence
% Present Correct — 93.79 o )
@
(Vp]
=)
Test o
.. Absent Present S _ -
Application uee £sE S 0 { B) TEMPy 5 = 21°C
(| 45 90 135 180 225
Absent 10 7 Total Phosphorus (m, pg L™)
Present 4 65 10.4 14.1 17.8 21.5 25.2 28.9
Ambient Temperature (@, °C)
Accuracy (% correct) - 89.0 T ' ' ' ' ' '
otal 86
% Absent Correct — 71.43 11.6 14.0 16.4 18.8 21.2 23461

-1
% Present Correct — 90.23 WndSpd,,, ; (A, km hr)



Visualizing Predictive Variances & Uncertainties for Microcystis (Continuous)

Microcystis as a function of TP & TEMP

Total Phosphorus ([ g L)

a4
i
"’g 11.0 Half-Maximal Abundance
Dc . Concentrations / Conditions:
s 6 3- <
2099 S0 s 110 TPs,=50.4 [g L
= . — 10° = TEMPs, = 26.3 °C
@ G — _ .
= 10" ° 99 Wndspd(_gD)50 =23.8km hrt
277 >
) (@]
-~ -
S 6. =
= «n 838
B 5% - &
|
3 2 ° 77
(o] . —
> =
©
DL 6.6
(«B)
©
o
- ] _ i i = 55-
! Microcystis as a function of TP (by TEMP slices) : : . . : .
110 - 0 45 90 135 180 225
e Total Phosphorus (M, pg L™)
C‘;’; 9.9 11.5 15.3 19.1 22.9 26.7 30.5
S / Temperature (@, °C)
» 8.8 — 13.5 16.2 18.5 21.1 23.6 26.1
4(7; -1
> e 5, WndSpdpye-3 (A, km hr)
o 7.7 — 14.8
B — 17.1
. — - 19 4
2 — 21,7
S 6.6 s 24,0
Q@ 26.3
% — 28,6
O 5.5 ! T T T T 1
S 0 45 90 135 180 225
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This 1s were we are TODAY!

greenhouse
effect

) : drought =
Agricultural, stronger storms =
Industrial, LOW FLOW =
Residential, HIGH FLOW =
& Urban high mixing, shorter low mixing &
Sources residence time, & longer residence
more nutrients time
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hypolimnion

sediment
‘Paerl-0-gram’ courtesy of removal

Hans Paerl, Univ. North Carolina - Chapel Hill organic rich sediments




Still more effort to develop and investigate new ideas

Machine-
learning
analytics

Machine-learning algorithms capable of autonomously unearthing and
reproducing complex patterns within sizeable data quantities afford great
potential for fueling ecological hypothesis creation and ‘intelligent’
knowledge derivation (here, ‘Robo-ecology’).
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