The Role of Artificial Neural Networks in Understanding Complex Systems Behavior

Gary R. Weckman

Ohio University Palm Island Enviro-Informatics & Business Solutions, LLC

David F. Millie

Palm Island Enviro-Informatics & Business Solutions, LLC Loyola University, New Orleans

Andrew P. Snow

Ohio University School of Information and Telecommunication Systems

What are complex systems?

- "A system comprised of a (usually large) number of (usually strongly) interacting entities, processes, or agents, the understanding of which requires the development, or the use of, new scientific tools, nonlinear models, out-of equilibrium descriptions and computer simulations." [Advances in Complex Systems Journal]
 - "A system that can be analyzed into many components having relatively many relations among them, so that the behavior of each component depends on the behavior of others. [Herbert Simon]"
 - "A system that involves numerous interacting agents whose aggregate behaviors are to be understood. Such aggregate activity is nonlinear, hence it cannot simply be derived from summation of individual components behavior." [Jerome Singer]

Our Research: Complex Systems

Easily manage your...

Artificial Neural Networks

Machine-learning algorithms that identify data patterns and perform decision making in a manner imitating cognitive functionality

***** '*Learning*' (analogous to problem solving) is:

- ✓ adaptive knowledge is altered, updated, & stored (via weights)
- ✓ iterative examples to generalizations
- *Universal approximators*' can discover & reproduce any (*linear / non-linear*) trend given enough data & computational (processing) capability
 - ✓ No expert knowledge required
 - ✓ Few (if any)'formal' assumptions i.e. Gaussian requirements, etc.

Disadvantage - (superficially ? ?) lack a declarative knowledge structure

✓ a '*Black Box*' (i.e. no global equation)

Biological Analogy

Inputs

- Brain Neuron
- Artificial neuron

Set of processing

with adjustable

strengths

elements (PEs) and

connections (weights)

- Synapse Axon Dendrites **w**₁ W_2 f(net) Wn **X1 X2** Input Output **X3** Layer Layer **X4 X5**
 - den Laver

Modeling Approach

Early Days: Interested in "Model Accuracy"

Modeling Approach

Early Project: Stock Market Model

Accuracy of predicting market turns – not necessarily why

'Paradigms' of Scientific Discovery *

* Empirical - describing natural phenomena

- **initiated, a thousand years ago**
- Theoretical models, 'laws' & generalizations
 initiated, the last few hundred years

Computational - simulating complex phenomena
 initiated, the last few decades

ANN: BLACK BOX

KNOWLEDGE EXTRACTION defined:

is the creation of knowledge from structured (relational databases, XML) and unstructured (text, documents, images) sources [https://en.wikipedia.org/wiki/]

Is there a way illuminate the black box?

Environmental Modeling & Knowledge Extraction

1st ATTEMPT:

- Included all attributes collected
- Sensitivity about the means
- Found many limitations to current method

How are we to explain a more complex situation?

Variable Behavior

Predicting Saginaw Bay Chl a (1991-1996) MLP - 1 Hidden Layer of 4 Processing Elements

Hydrological Predictors: °C, Sechhi, K_d, Cl, NO₃, NH₄, SRP, TP, SiO₂, PSiO₂, DOC, POC

Measured Chlorophyll *a* (µg L⁻¹)

Existing Knowledge Extraction Tools

Neural Interpretation Diagram

- Decomposition method to visual
 - Determine significance of input variables
 - Based on the magnitude of interconnecting weights

Connected Weights

- Decomposition method that uses weights of an ANN to determine:
 - Input Significance to model
 - Nodes Significance to ANN
- Procedure
 - Calculate "connected weights" for all possible paths of the network

Network Interpretive Diagram* (of a trained network)

Single Parameter Sensitivity Analysis (± 1 SD)

Garson's Algorithm **Relative Share of Prediction**

Developed More Complex Networks

Saginaw Bay CHL a (2008-2010) - Hydrological & Meteorological Predictors

Developed New Approaches to Observe Interactions

Multi-Variable Sensitivity Analysis (circa 2006 !)

Decision Trees

- Symbolic Knowledge Extraction Technique
- Most commonly used decision tree induction algorithm – C4.5 (Quinlan)
- Recursive partitioning of the data
- Drawback: Amount of data
 reaching each node decreases
 with the depth of the tree
 - Alternative: TREPAN

TREPAN+ Methodologies

20

Simulation Based Neural Network Modeling

Investigate training a NN network with results from wireless simulation

Knowledge Extraction for Wi-Fi

 \bullet

•

Sensitivity

Needed More Understanding: Variable Interactions

Multiple Variable Interactions while looking at various states!

Our drive to Mechanistic Model: Grey Box => WHITE BOX

Different Project: Crude Oil Impact

- Used New Set of Tools:
 - >Limitations to Sensitivity:
 - 2 ANNs were created for "high" and "low" %Crude Oils
 - Sensitive results were very different

Revised Look: Saginaw Bay 2008 - 2010

Introduced New Visualizations: Multi-variable Impact on Chlorophyll a

CHL as a function of TP & TEMP Modeled Chlorophyll a ($\Box g \ L^{-1}$) 125 100 0 μg Chl a L⁻¹ 25 75 50 75 50 100 125 25 12 Temperature (C) 0 230₁₈₄ 138 92 Total Phosphorus 0¹²

CHL $a^{0.5} = 1.98 + (0.03*TP)$ adj r² = 0.99, Fit SE = 0.41, Fstat = 29857.36

 $\ln \text{CHL } a = 2.23 + (0.002 * \text{TEMP}^2)$

adj $r^2 = 0.99$, Fit SE = 1.03, Fstat = 6323.88

CHL $a = -862.16 + (473.88*WndSpd_{Ave-3}) - (103.65*WndSpd_{Ave-3}^2) + (12.14*WndSpd_{Ave-3}^3) - (0.82*WndSpd_{Ave-3}^4) + (0.03*WndSpd_{Ave-3}^5) - (0.001*WndSpd_{Ave-3}^6) + (5.80e-6*WndSpd_{Ave-3}^7)$ adj r² = 0.99, Fit SE = 0.13, Fstat = 13,127.67

Delineating TP Thresholds for Saginaw Bay CHL a (2008-2010) (Taking Into Account the Interactions and/or Synergisms of Co-Limiting Nutrients)

CHL a as a function of TP & NH₄-N CHL a (µg L⁻¹) CHL a (µg L⁻¹) ²⁴ ¹⁸ ¹⁵ ⁶ 18 they w NH4-N (µg L-1)

Development of Grey Box Technique

 $[CHL a] = w_1 \cdot f(x_1, y_1) + r_1, \ r_1 = w_2 \cdot f(x_2, y_2) + r_2,$ $r_2 = w_3 \cdot f(x_3, y_3) + r_3, \text{ and } r_{n-1} = w_n \cdot f(x_n, y_n) + r_n$ Generalized Equation for 2 variable interaction with output (CHL a)

Iterations : ANNs Models

$$[CHL a]_{Grey-Box} = [CHL a]_{1st iteration} + [CHL a]_{2nd iteration...} + [CHL a]_{nth iteration} + r_n$$

Multiple ANN models utilizing 2 variables at a time to predict Output

Iterations: Additive Models

Finalized Combined Model

30

Global Sensitivity

- Sensitivity about Means
 - Local Sensitivity
 - Does not consider variable interactions as states change
- Developed Global Sensitivity

 Looks at how variables interact as their states change!

Global Sensitivity

Each Variable has its own distribution of values (States)

Impact of Correlation on State Behavior

PON	Secchi	TSS	TP	TDP	SRP	NH4	NO3	CL	Sol_Si	POC	DOC
-1.25 σ	1.57	-0.70	-0.98	-0.48	-0.25	0.02	-0.02	-0.57	-0.16	-1.16	-0.80
-0.75 σ	0.53	-0.67	-0.59	-0.04	-0.14	0.09	0.41	-0.02	-0.40	-0.79	0.04
-0.25 σ	-0.17	-0.08	-0.16	-0.11	-0.09	-0.09	-0.04	-0.14	-0.09	-0.26	-0.14
0.25 σ	-0.40	-0.02	0.14	0.13	0.04	-0.26	-0.24	-0.16	0.39	0.35	-0.06
0.75 σ	-0.68	0.50	0.31	-0.37	-0.06	-0.49	-0.35	-0.06	0.20	0.87	0.15
1.25 σ	-0.75	0.64	1.58	0.97	0.72	-0.08	-0.64	0.89	0.31	1.42	0.42

Global Variation Across States

Global (State Based) versus Local (Means) Sensitivity

Lake Erie *Microcystis* (Continuous MLP); Hydrological & Meteorological HLs: 32-15-14-10-1, TanH/Mom

Data Issues

Big: Random reduction

- Little: Synthetic (SMOTE)
- Imbalance Data
- 0's

Cology & 'Big' Data:

Not all 'Big Data' created equally:

volume, variety, velocity, volatility, veracity

- No longer '... your daddy's database ...'
- Big' Data = 'Big' Information = 'Big' Value Does 'Big' Data ensure 'Big' Science

Imbalanced Datasets

- Definition: under or over representation of a class in a dataset is considered as an imbalance in a dataset.
- Ill-balanced, unbalanced, uneven

Balanced Dataset

Imbalanced Dataset

Graphic showing change under/over Sampling

Under Sampling

Over Sampling

SMOTE's Informed Oversampling Procedure

Smote: Synthetic Minority Oversampling Technique

Lake Erie (2009-2011) Chlorophyll a & Microcystis Distributions

World Health Organization Guidance Values for Acute Health Effects of Cyanobacteria-Dominated Waters *

* after Chorus & Bartram 1999

Lake Erie *Microcystis* (Presence-Absence MLP); Hydrological & Meteorological HLs: 29-15-10-5-1

Training & Cross Validation (class imbalance corrected via SMOTE)	Absent	Present	
Absent	130	10	
Present	8	151	
Accuracy (% correct % Absent Correct – % Present Correct –	Total	2	

Test Application	Absent	Present	
Absent	10	7	
Present	4	65	
Accuracy (% corre % Absent Correct	Total	86	
% Present Correct	- 90.23		

Concentrations / Conditions for Occurrence Likelihood of *Microcystis*:

Visualizing Predictive Variances & Uncertainties for *Microcystis* (Continuous)

42

This is were we are TODAY!

Still more effort to develop and investigate new ideas

Machine-learning algorithms capable of autonomously unearthing and reproducing complex patterns within sizeable data quantities afford great potential for fueling ecological hypothesis creation and 'intelligent' knowledge derivation (here, 'Robo-ecology').