Object Detection and Recognition in Complex Environmental Conditions

Vijayan K. Asari

University of Dayton

Dayton, Ohio, USA

VISUAL 2016

13 November 2016

Overview

Object Detection and Recognition: Processing Pipeline

Focus Areas

Image and Video Preprocessing

Wide Area Surveillance

Object detection Object recognition Object tracking 3D reconstruction Change detection

Vision-Guided Robotics

Robotic navigation Path planning Object following Behavior analysis Threat analysis

Perception Beyond Visible Spectrum

LiDAR data analysis Hyperspectral data IR/thermal data Satellite imagery EEG data analysis

Brain Activity Analysis

Face recognition Human action and activity recognition Expression analysis Emotion recognition

Emotion recognition Brain machine interface Source localization Neurofeedback

Enhancement of Low Lighting and Over Exposed Images

Underexposed, dark, dark and bright (shadows), bright, overexposed regions

ISION

Dynamic Range Compression

Intensity computation (NTSC)

 $I(x, y) = 0.2989 \times I_{Rh}(x, y) + 0.5867 \times I_{Gh}(x, y) + 0.114 \times I_{Bh}(x, y)$

Nonlinear function

Adaptive Estimation of Control Parameter

q < 1 Provide various nonlinear curves if the pixels are dark.

q = 1 Provides a curve if the pixel has sufficient intensity.

q > 1 Provide various nonlinear curves if the pixels are bright.

 $w_2 = 20$

 $w_1 = 5$

 $w_3 = 240$

Depending on the mean value of its neighborhood

$$I_{M_i}(x, y) = \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} I(m, n) G_i(m + x, n + y)$$

$$G_i(x, y) = K.e^{\left(\frac{-(x^2+y^2)}{w_i^2}\right)}$$

Multi-level Gaussian function

Window size depends on the resolution and object size in an image.

Adaptive Estimation of Control Parameter

Criteria for estimation of q

$$q = \begin{cases} <1, ifI_{M_n} < 0.5 \\ =1, ifI_{M_n} = 0.5 \\ >1, ifI_{M_n} > 0.5 \end{cases}$$

The function for the q value can be designed as

$$q = Tan \left(I_{M_n}(x, y) * (\pi / c_1) \right) + c_2$$

For q values which are closer to 0 the noise in the extreme dark regions will also be enhanced.

Hence, the q values corresponding to the mean value below 0.2 is considered as extreme dark regions and q for those pixels can be calculated as

$$q = \log\left(\sqrt{2I_{M_n}(x, y) + 2}\right);$$

Nonlinear Enhancement Module

Contrast Enhancement

$$S(x, y) = 255 x I_{enh}(x, y)^{E(x, y)}$$
 $E(x, y) = \left[\frac{I_{conv}(x, y)}{I(x, y)}\right]$

Color restoration

$$I_{enh,i} = I_i(x, y) \begin{pmatrix} I_{enh}(x, y) \\ / (I_n(x, y)) \end{pmatrix}$$

where *i* represents red, green, blue spectral band

Enhancement of Low Lighting and Over Exposed Images

Weather Degraded Image: Poor contrast, distorted color

Hazy image

Weather degraded image

Hazy image

Estimation of approximate thickness of haze in the scene and enhancement using a single nonlinear function.

An adaptive estimation of control parameter from its neighborhood information.

Original

Original

Transmission map

Transmission map

Haze-free

Haze-free

Original Images

Enhanced Images

Scene Visibility Improvement: Rain Removal

VISION LAB

With rain

Rain removed

Biometric Data Analysis for Human Identification

Face Detection

Human Detection

Class1 (Positive)

Framework of the Human Detection System

Chromatic domain phase features with gradient and texture (CPGT)

CPGT Detector Results

CPGT Detector Results

Face Recognition System

Face Detection – quickly and efficiently locates all faces in a given image region.

Face Features – calculates unique features of each person in the face database that can be used for accurate classification.

Feature Classification -

compares features of face regions obtained from the detection process with face feature data computed from the training stage to determine the identity of individuals.

Face recognition in video

Face Recognition: Appearance Variations

Lighting

Face Recognition – UD Research

- Images at various lighting conditions are enhanced to a uniform lighting environment.
- In order to reduce the search space for faces in an image frame, the human skin regions are extracted using the color information.
- Search for faces in all skin regions by using a feature matrix developed by a training process.
- Detected faces are tracked in consecutive frames by statistical analysis performed using the concept of particle filter.
- Manifold learning technique for face recognition.

Skin Color Segmentation

Skin colors are forming a nonlinear pipe in the RGB space. It is possible to describe the skin color mathematically using the nonlinear manifold.

Face Detection

Training with faces and non-faces. Dimensionality reduction. Classification.

Face Detection in Enhanced Images

Skin segmented image

Original image

Enhanced image

Detected faces

Lighting Invariant Face Detection

Pose Invariant Face Detection

Pose Invariant Face Detection

Face Recognition: A Modular Approach

Face Recognition: Object Pose and Orientation Variation

Face images are from UMIST face database

Synthetic Database using Single Training Image

45 Degree Side-Lighting from both sides

Original image

3D Face Model

Top-Lighting Overhead

Top-Lighting Overhead with 45 Degree Side-Lighting from both sides

Generated synthetic 2D images

Face Recognition – Moving Forward!

Object Detection, Tracking, and Identification: Wide Area Motion Imagery Data and IR Data Analysis

Pedestrian tracking

Object detection and tracking on WAMI data

Whale blow detection in IR video

whale blow detection in IR video

Wide Area Aerial Imagery Data Analysis

- CLIF Columbus Large Image Format.
- Data from electro-optic sensors mounted on an aerial platform flying at 7000 feet.
- Six cameras with partially overlapping fields of view.
- Frame size: 4008×2672 pixels at 2 fps.

Objects of interest - cars, vans, trucks

Moving Object Detection

Object Tracking

- Feature tracking using **Dense SIFT**
 - Extract SIFT features for every pixel .
 - Dense feature set gives a better representation of the object.
 - Matching is based on the criteria that ratio of distances to first and second closest match should be greater than a particular threshold.

Vehicle Tracking

Tracking multiple objects in a scene with enhancement

Object Tracking with Enhancement and Super-resolution

Pedestrian Tracking

Track pedestrian movement in long range data (CLIF data)

Pedestrian Tracking

Classification Problem on CLIF Data

- Low resolution
- Poorly defined contour
- No color information

- Trucks and cars: Intensity distributions are significantly different
 - Enhancement is an important preprocessing step
 - Some fuzziness in the intensity distribution
 - Classifiable with Linear SVM

Tracking with Classification

Moving Object Classification

Detecting and classifying moving targets into two classes.

Moving Object Classification with Enhancement

The number of detections significantly improves with super-resolution and enhancement.

Whale Blow Detection in IR Video: Objective

- Detect and track movement of whales during migration
 - Detect presence of whales by detecting whale blows
 - Estimate pod size using timing constraints of whale blows
 - Track whale movement based on their characteristic movement patterns

IR Video: Frame Size: 340 × 280 pixels, **Frame Rate:** 30 fps

Characteristics of Whale Blows

- Blow appears as a distinct change in the environment.
 - Whale blow is brighter than the background.
 - Distinctive shape when the blow is full-size.
- Two whale blows will not have same base.
 - Presence of significant distance between two whales.
- Temporal characteristics of the blow.
 - Rise period and fall period.
 - Characteristic variation in blow shape.

Whale Blow Detection

Video with whale blow

Whale Blow Detection

With textural variations on the surface

Whale Blow Detection

Multiple whale blows

Oil/Gas Pipeline Right-of-Way Automated Monitoring for Pipeline Encroachment and Machinery Threat Detection

Part-based Model for Robust Classification

• The purpose of developing a part-based model is to cope with partial occlusion and large appearance variations.

Part-based Model for Robust Classification

Ringlet Part-Based Model

Method: Using Ring Histogram for each part of objects

- Invariant to rotation
- Still contains spatial information
- Still contains partial occlusion ability

Raw Image– Non Occlusion

Part-based Detection – Non Occlusion

Final Detection Output

Raw Image– Partial Occlusion

Part-based Detection – Partial Occlusion

Final Detection Output

Threat Detection Results

Brain Signal Analysis: Emotion Recognition and Brain Machine Interface

Control

Classification

Decision

Brain machine interface

Security

Intentions, motives

Efficiency

Stress detection, fatigue assessment

Thanks

Sensing, Processing and Automatic Decision Making in Real Time

www.visionlab.udayton.edu