PN This project has received funding from Q
Bl *; the European Union‘s Horizon 2020
* * research and innovation programme
under grant agreement No. 671603 A"

© www.allscale.eu

An Exascale Programming, Multi-objective Optimisation and Resilience
Management Environment Based on Nested Recursive Parallelism

AllScale

Enable developers to be productive

and to port their applications
to any scale of system

Thomas Fahringer, Herbert Jordan, Peter Thoman
University of Innsbruck, Austria

Queen’s University Qgg@g%e
Belfast ZKTHE

VETENSKAP
FRIEDRICH-ALEXANDER 28 OCH KONST 9%
UNIVERSITAT _ o o
ERLANGEN-NURNBERG TR

Austrian HPC Meeting 2017 Supercomputing 2017, Denver

What people think of HPC
programming

How computer scientists
deal with the algorithm

How domain scientists

construct their algorithm

Our future of HPC
Programming

7S

All

© www.allscale.eu

7S

. All
Parallel Architectures ...

Multicore: Accelerators: Clusters:
1
IICI IICI m]
Lllr el R
S S S
Memory M M M
OpenMP/Cilk OpenCL/CUDA MPI/PGAS

This project has received funding from the European Union‘s Horizon 2020 research
and innovation programme under grant agreement No. 671603

7S

. All
Real World Architectures ...-0.

CILS
LILG OpenMP/Cilk
Ls |
| Memory | [— ——
—r——
C
o s OpenCL/CUDA ia C E]
$]1

[

MPI/PGAS

This project has received funding from the European Union‘s Horizon 2020 research
and innovation programme under grant agreement No. 671603

7S

All

Hybrid Codes

* e.g. MPI+X+Y

* |ssues:
— hard-coded problem decomposition
— lack of coordination among runtime =
systems cIlc
cllc G
. . . . L1l $I Ll]] 1
* Limited built-in support for: v [m B
— portability, auto-tuning, load
balancing, monitoring, or resilience
This project has received funding from the European Union‘s Horizon 2020 research 5

and innovation programme under grant agreement No. 671603

7S

- All
AllScale Vision

Application Parallel Algorithm

Unified Parallel Programming Model

!

Toolchain

Portability, Tuning,
and Resilience

e T

| l—r—
—i s 1 o |
I(I:I I(I:I < I
1
|;| |C|:| |¢| G ?] Iﬁ:l |;|
L1l] g ? G
S S S Al | IR]
M M M >] —
Memor -
v v] [P
Multicore Accelerators Clusters Heterogeneous Clusters
This project has received funding from the European Union‘s Horizon 2020 research 6

and innovation programme under grant agreement No. 671603

7S

All

Conventional Flat Parallelism°

How to map flat parallelism to a hierarchical parallel architecture?
Complex handling of errors — global operations

4 At:N
()
€
S
< > Ao
parallelism
Ay
(]
€
i
< > Ao
parallelism

time
>
:'; I

parallelism

yimous |a||eled seaul|

\

._._..._._.

\

\

@ .. global barrier

D

AllScale Core Programming Mode "

* Try to provide an automatic solution:
— Performance portability, load balancing,
resilience, autotuning
* Our answer:
Recursive Nested Task Parallelism

— Why?

Recursively Nested Parallelism

Aty

time

A t=N/2

A t=0

A

»
»

space

Global Synchronisation

...................... Local Synchronisation

@ ... Recursive call

D

All

© www.allscale.eu

yimoJ3 |9|jesed |enuauodx]

7S

All

Objective

* Developers:
— focus on application
— expose maximum amount of parallelism

* Toolchain:
— utilize parallelism
— handle data management and portability
— load balancing, resilience, and tuning

This project has received funding from the European Union‘s Horizon 2020 research 10
and innovation programme under grant agreement No. 671603

AP AI@ale

© www.allscale.eu

* Based on C++ templates
— Widely used industry standard

* Two Layers:

User-Level API

High-level abstractions (e.g. grids, meshes, stencils, channels)
Familiar interfaces (e.g. parallel for loops, map-reduce)

Core API

Generic function template for recursive parallelism
Set of recursive data structure templates
Synchronization, control- and data-flow primitives

7S

. All
How does the code look like? .5

auto allscale fib = allscale::prec(

[](int n) { return n<2; }, Base Case Condition
[](int n) { return n; }, Base Case
'](int n, const auto& fib) { R
auto x = fib(n-1); >~ Step Case
auto y = fib(n-2);
return x.get() + y.get(); ~

)

This project has received funding from the European Union‘s Horizon 2020 research
and innovation programme under grant agreement No. 671603

D

. . All
No Recursion Required .00

* Previous code directly uses core APl and is
one of the smallest possible examples

* You probably have (at least) two questions:
— What about data?

— How am | supposed to write a recursively
task parallel version of my HPC code?

This project has received funding from the European Union‘s Horizon 2020 research
and innovation programme under grant agreement No. 671603

7S

All

What about data?

* The AllScale environment manages data for you

— Whether to distribute it, keep it up to date, move it
to an accelerator, make a backup for resilience, ...

 What it needs for that is a data item type T,
which specifies the following types:

— a type F for fragments of the data storage

— a type R for addressing sub-ranges of the data
structure Domain scientists are not expected

to write these!
They are part of the user API.

This project has received funding from the European Union‘s Horizon 2020 research
and innovation programme under grant agreement No. 671603

How to write a recursively task parallel A"@

version for an HPC code?

* The short answer: you don‘t need to.

* There are three options:
— Directly use allscale::prec.
— Use mid-level primitives provided by the user API.
(e.g. allscale::pfor)
— Use high-level algorithmic skeletons which fit your
application domain (also part of the user API).

This project has received funding from the European Union‘s Horizon 2020 research
and innovation programme under grant agreement No. 671603

7S

All
pfor -

start of iterator range (inclusive)

pfor operator end of iterator range (exclusive)

(generic function) / body function (C++11 lambda)
/

pfor(0,10,[&](int i) {
Ali] =1;
iterator variable

})1 loop body

array A captured by reference

Initializes first 10 elements of array A with values 0-9 in parallel.

This project has received funding from the European Union‘s Horizon 2020 research 16
and innovation programme under grant agreement No. 671603

7S

. All
pfor Implementation ...t

pfor construct

open
Sl AliScale User API
prec operator closed
& treetures AllScale Core API
<provides>
Toolchain

, , implementation
Compiler & Runtime

System

This project has received funding from the European Union‘s Horizon 2020 research 17
and innovation programme under grant agreement No. 671603

Interfaces

7S

All

© www.allscale.eu

Applications

v

Generic Parallel Primitives I

User-Level API

(C++ Template API) I

Core API

N

I P— P—
, I
1 : APl-aware high- o0 S
! I level Compiler £ . g
| | sSE|| ¥
, Standard 1 Tl <
| C++ : #‘ § 5:] =
I Toolchain v T o
I : Unified £ 5 %
! I Runtime System S =
I i a
: | I Scheduler I o
I M——
I

SO —— pea—

Desktop :
Hardware |

Development

This project has received funding from the European Union‘s Horizon 2020 research

Small- to Extreme-Scale
Parallel Architectures

Tuning & Deployment

Pilot Applications

Single Source
User Interface

Generic APIs for
abstract Algorithm
Descriptions

Code Generation for
Accelerators and
Distributed Memory

Universal Abstract
Machine Model

Dynamic Load, Data
and Resource
Management

Parallel
Hardware

Identify & Express

Decomposition &

Computation & Data

Parallelism

Restructuring

Management

and innovation programme under grant agreement No. 671603

18

Execution

7S

All

© www.allscale.eu

____/:/k_
©)

Resilience
Instructions

Optimisation Input
Objectives Code w
S e T T |
f E A A E

v

< E/s 1
Multi-Objective <
Dynamic Optimiser <
and Scheduler
Steering
Cmds
Continuous
Steering Process
(eTo]
Qo oo £
o [S| |E||T
5 - ? © g
® | & © = Distributed a
> T T Q c
g ~ - g Work & Data <
7] - 0ng
© S g Entities processed
o by Resources

Monitoring Sensors
Program Events

Resilience
Manager

Processing Architecture
(utilised via: MPI / Infiniband / OpenCL / CUDA / ...)

AllScale Runtime System

This project has received funding from the European Union‘s Horizon 2020 research
and innovation programme under grant agreement No. 671603

19

7S

All
AllScale Products

Parallel C++
Data Structures
and Algorithms

AllScale API

\

<implemented by>

Compiler and
Runtime System
providing
Portability, Tuning,
and Resilience

AllScale Toolchain

AllScale Environment

This project has received funding from the European Union‘s Horizon 2020 research 20
and innovation programme under grant agreement No. 671603

7S

All

Objective

* Developers:
— focus on application
— expose maximum of parallelism

* Toolchain:
— utilize parallelism
— handle data management and portability

— load balancing, resilience, and tuning

This project has received funding from the European Union‘s Horizon 2020 research 21
and innovation programme under grant agreement No. 671603

7S

All

Pilot Applications

iPIC3D AmDaDos Fine/Open
Implicit particle in-cell _ . Large Industrial
code for space weather Adaptive meshing, data unsteady CFD
applications assimilation for dispersion simulations
KTH of oils spills NUMECA

IBM Research

INTAKE COMPRESSION COMBUSTION EXHAUST

'- (.l) - -

I
l
4
:
10
Y
M
J

Al let Compression Combustion Chambers ~ Tubine ~ Exhaust

T T
Cold Secton Hot Section

This project has received funding from the European Union‘s Horizon 2020 research 22
and innovation programme under grant agreement No. 671603

7S

All

Summary

Challenge
— Explore recursive task parallelism for extreme scale HPC

AllScale

— single programming model based on C++ templates
— main source of parallelism: recursive parallelism
— single compiler/single runtime system

— auto-tuning, code-versioning, fault tolerance, on-line
monitoring

First prototype released with tutorial
https://github.com/allscale

More information
— www.allscale.eu

This project has received funding from the European Union‘s Horizon 2020 research 23
and innovation programme under grant agreement No. 671603

Partners

7S

All

© www.allscale.eu

A — —
A — —_—
A — —
AN — —
— — == FRIEDRICH-ALEXANDER
———— = = UNIVERSITAT _
—4 _— ERLANGEN-NURNBERG

Queen’s University
Belfast

N ML CA

INTERNATIONAL

This project has received funding from the European Union‘s Horizon 2020 research 24
and innovation programme under grant agreement No. 671603

