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What people think of HPC
programming

How computer scientists
deal with the algorithm

How domain scientists

construct their algorithm

Our future of HPC
Programming
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Parallel Architectures ...
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Real World Architectures ...-0.
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Hybrid Codes

* e.g. MPI+X+Y

* |ssues:
— hard-coded problem decomposition
— lack of coordination among runtime =
systems cIlc
cllc G
. . . . L1l $I Ll ] ] 1
* Limited built-in support for: v [m B
— portability, auto-tuning, load
balancing, monitoring, or resilience
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AllScale Vision

Application Parallel Algorithm

Unified Parallel Programming Model
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Toolchain

Portability, Tuning,
and Resilience
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Conventional Flat Parallelism ....°

How to map flat parallelism to a hierarchical parallel architecture?
Complex handling of errors — global operations
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AllScale Core Programming Mode "

* Try to provide an automatic solution:
— Performance portability, load balancing,
resilience, autotuning
* Our answer:
Recursive Nested Task Parallelism

— Why?



Recursively Nested Parallelism
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Objective

* Developers:
— focus on application
— expose maximum amount of parallelism

* Toolchain:
— utilize parallelism
— handle data management and portability
— load balancing, resilience, and tuning

This project has received funding from the European Union‘s Horizon 2020 research 10
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* Based on C++ templates
— Widely used industry standard

* Two Layers:

User-Level API

High-level abstractions (e.g. grids, meshes, stencils, channels)
Familiar interfaces (e.g. parallel for loops, map-reduce)

Core API

Generic function template for recursive parallelism
Set of recursive data structure templates
Synchronization, control- and data-flow primitives
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How does the code look like? .5

auto allscale fib = allscale::prec(

[ ](int n) { return n<2; }, Base Case Condition
[](int n) { return n; }, Base Case
' ](int n, const auto& fib) { R
auto x = fib(n-1); >~ Step Case
auto y = fib(n-2);
return x.get() + y.get(); ~

)

This project has received funding from the European Union‘s Horizon 2020 research
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No Recursion Required .00

* Previous code directly uses core APl and is
one of the smallest possible examples

* You probably have (at least) two questions:
— What about data?

— How am | supposed to write a recursively
task parallel version of my HPC code?

This project has received funding from the European Union‘s Horizon 2020 research
and innovation programme under grant agreement No. 671603
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What about data?

* The AllScale environment manages data for you

— Whether to distribute it, keep it up to date, move it
to an accelerator, make a backup for resilience, ...

 What it needs for that is a data item type T,
which specifies the following types:

— a type F for fragments of the data storage

— a type R for addressing sub-ranges of the data
structure Domain scientists are not expected

to write these!
They are part of the user API.

This project has received funding from the European Union‘s Horizon 2020 research
and innovation programme under grant agreement No. 671603



How to write a recursively task parallel A"@

version for an HPC code?

* The short answer: you don‘t need to.

* There are three options:
— Directly use allscale::prec.
— Use mid-level primitives provided by the user API.
(e.g. allscale::pfor)
— Use high-level algorithmic skeletons which fit your
application domain (also part of the user API).

This project has received funding from the European Union‘s Horizon 2020 research
and innovation programme under grant agreement No. 671603
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pfor -

start of iterator range (inclusive)

pfor operator end of iterator range (exclusive)

(generic function) / body function (C++11 lambda)
/

pfor(0,10,[&](int i) {
Ali] =1;
iterator variable

})1 loop body

array A captured by reference

Initializes first 10 elements of array A with values 0-9 in parallel.

This project has received funding from the European Union‘s Horizon 2020 research 16
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pfor Implementation ...t

pfor construct

open
Sl AliScale User API
prec operator closed
& treetures AllScale Core API
<provides>
Toolchain

, , implementation
Compiler & Runtime

System
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AllScale Products

Parallel C++
Data Structures
and Algorithms

AllScale API

\

<implemented by>

Compiler and
Runtime System
providing
Portability, Tuning,
and Resilience

AllScale Toolchain

AllScale Environment
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Objective

* Developers:
— focus on application
— expose maximum of parallelism

* Toolchain:
— utilize parallelism
— handle data management and portability

— load balancing, resilience, and tuning

This project has received funding from the European Union‘s Horizon 2020 research 21
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Pilot Applications
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Summary

Challenge
— Explore recursive task parallelism for extreme scale HPC

AllScale

— single programming model based on C++ templates
— main source of parallelism: recursive parallelism
— single compiler/single runtime system

— auto-tuning, code-versioning, fault tolerance, on-line
monitoring

First prototype released with tutorial
https://github.com/allscale

More information
— www.allscale.eu
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