ADAPTIVE TASK SCHEDULING USING
LOW-LEVEL RUNTIME APIs AND MACHINE
LEARNING

Keynote, ADVCOMP 2017

November, 2017, Barcelona, Spain

Prepared by: Ahmad Qawasmeh
Assistant Professor
The Hashemite University, Jordan

QOutline

”Motivation and Background

“ted Work

eAPARF Framework Implementation (OpenUH)

= OpenMP tasking profiling APIs
= OpenMP profiling tool and performance analysis
= A hybrid machine learning model for adaptive prediction

@ Analysis and Evaluation

“mary and Future work

Motivation and Goal

140

120

3

o0
o

Time (Sec)

8

P
o

R
=]
|

Best Default

2
Improvement pe

e

B Sort time
B Health time

a
E‘ == S0rt improvement

Predicting the optimum task scheduling scheme for a
given OpenMP program by developing Adaptive and

portable framework

e

Main Contributions.

| proposed a new open-source API for OpenMP task profiling in
OpenUH RTL

| developed a reliable OpenMP profiling tool for capturing
useful low-level runtime performance measurements.

loited my performance framework to perform a

rehensive scheduling analysis study

| built and evaluated a portable framework (APARF) for predicting the
optimal task scheduling scheme that should be applied to new, unseen
applications.

Background

Shared Memory: Logicél- Vlew

SMP Vs cc-NUMA

T

OpenMP APl .~

* A standard API to write parallel shared memory applications in C, C++,
and Fortran

% Consists of compiler directives, runtime routines, environment variables

Barrier
Master thread
N LT N
—— T L >—
S ._’/ \\ /f S . G— 4
\f/ \\ // A :*_':
N
Worker thread \ A Nested

" Parallel
\ _ / region
Parallel Regions

http://www.openmp.org

—

_r"r.:

OpenMP Tasks

*» A task is an asynchronous work unit
= C/C++: #pragma omp task
= Fortran: !$Somp task

*» Contains a task region and its data environment

int fib(int n) {

Int X, y;

If (n <2) return n;

else {
#pragma omp task shared(x)
X = fib(n-1);
#pragma omp task shared(y)
y = fib(n-2);
#pragma omp taskwait
return X +y;

}

(o)}

- YRR
EEEE—)]
e

.*DDDD.tEF

~EOEE - _w_._u..Dﬂ_DD.._-l_“.a...,ﬂ,__

0 |

o i _H__H_ ﬂ_ - e | r%_ .. |t______.__._._.__. |

haredtRanbued. Fool
|
wied QM

AR _

rl_uu_u_.l._ s ki L |
~EEBEH i
| ._.”...__..____..._.___..._ ! _UDD_H_ ~

pi—

|
5
&=
)
=
o
p)
Y
%
®
T
al
=
-
O
o
O

' I-i.l.—.r___._

o)

|
]-Em‘cm

- -'-l‘ [

Performance Observation -

__..-'-" = -

‘%— Oserlevel ah-.tmmc:m X
problem domamn

e
' leimm::mdg -:'""""f'm‘ﬂ'ﬂﬂﬂﬂimiﬁnj—-
‘rf / i ;E'-ﬂ!%c‘?'-"-"-"-'-’s" T instrumentation —-
J'Ir !f’ source code
: ;' compiler "Hlbmmmnm]m-
:' : S n?e: I .]il’;"i“ "' mstnunentation -
1l (linker |
i'l.lll'l I m“] ""':" wnstnunentation -
"\"‘-.ﬁ L] -::-*a)
\ "'-, rummu "“""F
P"f%:.;::“wc o= VM

Profiling vs. Tracing

10

OpenMP performance APIs befOreMPT

“* POMP (Profiler for OpenMP)

= Instrumentation calls inserted by a source-source tool (TAU, KOJAK,
Scalasca)

= Can notably affect compiler optimizations

“ ORA (Collector API)

= Sampling of call stack
= Originally has 11 mutually exclusive states, 9 requests, and 22 defined
callback event

= Was accepted as a white paper by ARB
Introduced before tasks and implemented in OpenUH RTL

X OMPT (OpenMP Tool Interface)

11

Related Work

Related Work (Adaptive Sthedmmg

** An OpenMP scheduler was proposed to adapt the granularity
of work within loops depending on data placement info.

¢ Some previous works have focused on disabling threads in
parallel loops in the presence of contention.

¢ A thread scheduling policy embedded in a GOMP-based
framework was proposed for OpenMP programs featuring
irregular parallelism.

s Another area of research aims to reduce scheduling overhead
by increasing task granularity by chunking a parallel loop or

by using a cut-off technique
13

e
|

Characterization using Machine'Learning

**Machine learning was used to characterize programs in
representative groups

M

14

Automatic Portable and
Adaptive Runtime
Feedback-Driven

(APARF) Framework

task created

Placed on tail of the
thread’s untied queue

READY

__ompc_task_switch:
execyte task removed

__ompc_add _task_to_pool:
adds task into the task pool

__ompc_task_exit:

__ompc_remove_task_from_pool
removes a task from the pool, and switches

decrement parent’s
num_children

RUNNING

__ompc_task_create:
adds child tasks to the
task pool
__ompc_task_wai

num_children ==

(other task) __ompc_task_exit

WAITING num_children == 0 ?

__ompc_remove_task_from_pool
removes a task from the pool, and switches
toit

http://web.cs.uh.edu/~openuh/

(other_task)

[task]
destroyed

| _ompc_task_exit

16

http://web.cs.uh.edu/%7Eopenuh/

OMPT and ORATasking Implementatlon

in OpenUH RTL ey

¢ proposed a tasking profiling interface in the OpenUH RTL as
an extension to the ORA before OMPT
= Task creation

Task execution

Task completion

Task switching

Task suspension

s OMPT Is a super-set of ORA

= Support sampling of call stack with optional trace event generation.

= State support, task creation and completion are mandatory, while the
others are optional

* Adapting my tasking APIs to be compatible with OMPT was
straightforward
17

Overhead Analysis in OpenUHTL

Health uTSs

- L AR o S
o PN N e | TN P s
-1.00% V ;3_m%— d =i—Tied EJ:SO% \ \/ \ == Tied
- \ / —dr—Untied 9 s \\ ° \

) . = U ntied /\ A ntied
; \ / v ;:E: v \ e U 1t
-3.00% y P . . . b—‘._:-:.. : v

2.00%

Overhead 3

L 0.00% ; ; : : . .
i 2 4 & 16 32 48 2 4 8 16 32 a8
of threads # of threads # of threads
Alignment SparselU Fibonacci
1.40% 0.45% 4.00%
1.20% A 0.40% A 3.50% .\
/ 0.35% 3.00%
o 1.00% f ® 0.30% // \\ ’\ £ 250% n\ -4
- - -
§ osos i f X f % I . T
E 0.60% —B—Tied g 0-20% 7/ Y 7 N —E—Tied B —&=Tied
3 Y — /) S 0.15% : Bt < 4
0.40% / /'}\ e | e d o \ / —sr—Untied s \ / == ntie
0.20% M of i | 0.50%
0.00% ;W . : i 0.00% | : ; . . — 0.00% ; ; b, - ;
2 4) 16 32 a3 2 4) 16 32 a8 2 4 8 16 32 ag
of threads # of threads # of threads
Floorplan NQueens Strassen
5.00% 5.00% 2.00% L
450% jﬂ 4.50% 1.80%
N\ .—-——F—!‘\ JAN,
4.00% * 4.00% 1.60%
 350% \ \r/-\ o 350% / 1.40% 7/ \
o 3.00% \ \ o 3.00% / N\ * 1.20% V4 \
8 250n \ \ 2 250% / LY 2 100% / \
Py \ \ A —=Tied i If \\ \\ —B=Tied = Gk ﬁATH —B—Tied
<) . <] 5)
1.50% Untied 1.50% e ntied 0.60% :
o \ A \ === | nitiE i f \ \ ntie i / A/\ / =r=Untied
WX N / _\ __= : = N
0.50% 0.50% 0.20% -
0.00% . : : L_,*—‘ 0.00% -—J—v—v—v—hqé‘v—\ 0.00% v : ;
2 3 8 16 32 48 2 4 8 16 32 48 2 4 8 16 32 48
of threads # of threads # of threads

Adaptive Scheduling Throu#gh:_-AP-ARF

— Scheduling scheme
b — OpenMP Program Adaptive
Feedback

Class 1 Class 2 Class 3

Interaction Example mAF’AR F

OpenMP Runtime OMPT APARF Profiling Tool

Request: Initialize monitoring

Begin tracking states/Task-1Ds
Notification: Success/Failure

Request: Current state/Task-1D

Query: Current state/Task-1D
P

Obtain Current state/Task-ID

Request: Registerevent A

Activate monitoring event A

Call back: event A

“ Ahmad Qawasmeh, Abid Malik, Barbara Chapman, Kevin Huck, Allen Malony,
"Open Source Task Profiling by Extending the OpenMP Runtime API",

IWOMP2013, pp. 186-199, September 2013, Canberra, Australia. 20

APARF OpenMP Profi 1|ngT00|

*Implements a single handler to handle all events.

ssInitializes the API to establish a connection with the runtime.
s»Captures useful low-level runtime performance measurements.
s Timing, HWCs, and Energy/power sensors were integrated.

int fib(int n) {
Int X, v;

If (n <2) return n;
else { / f \
;

#pragma omp task shared(x)

X = fib(n-1); ’;Lm - 1 - y

#pragma omp task shared(y)

y = fib(n-2); ‘~ /
#pragma omp taskwait -{ \ ~
return x +y; :' 5)

} 21

OpenMP Task Scheduling Analysis

An OpenMP task scheduler can be distinguished based on:

v" Queue organization
v' Work-stealing capability.
v" Order in which a task graph is traversed

“ucial issues should be managed by a task scheduler:

v' Data locality
v' Load balancing

@

v" Queue contention, work stealing, synchronization overheads
v' Task granularity (coarse vs. fine)

Conflicting Goals:

22

Analysis Setup in Op enUH

formed a detailed analysis study

s 200 scheduling schemes were applied to eight BOTS benchmarks
s Three different sets of threads were used with two input sizes
*» Initial observation: categorized into three representative groups

Platform Facts

AMD cluster | an x86-64 cc-NUMA Linux system with a four 2.2
GHz 12-core AMD Opteron processors (48 cores
total) and 512 KB L2 cache per core. and 10 MB
L3 cache shared by all cores

Intel cluster | an x86-64 ce-NUMA Linux system with two 2.5
GHz 12-core Intel Xeon processors (24 cores total)
and 512 KB L2 cache per core, and 15 MB L3 cache
shared by all cores

23

Analysis Setu p £

“We have used our performance framework

The captured runtime events are: task suspension, task
execution, task completion, task creation, explicit/implicit barrier,
parallel-region, and single/master/loop region

v' Exploiting data locality can best be expressed by demonstrating
the cache behavior (cache misses, CPI, TLB)

v' Maintaining load balancing was evaluated by obtaining the
timing distribution among threads for each captured event.

A. Qawasmeh, A. Malik, B. Chapman. “OpenMP Task Scheduling Analysis via
OpenMP Runtime API and Tool Visualization”, In 2014 IEEE 28th IPDPSW. pp.
1049 - 1058, May, 2014, Phoenix, Arizona, USA. 24

FFT (Time) FFT (L2 Miss Rate)
30.00%
25.00%
20.00%
B Best Thread O 15.00% M Best Thread 0
® Worst Thread 0 10.00% B Worst Thread 0
W Best Thread 1 5.00% - W Best Thread 1
B Worst Thread 1 0.00% - B Worst Thread 1
9\5"&06 zc‘}i}oo ‘(@%Q
Sort (Time) Sort (L2 Miss Rate)
1.2 30.00%
25.00%
20.00%
B Best Thread 0 15.00% M Best Thread 0
m Worst Thread 0 10.00% B Worst Thread 0
W Best Thread 1 5.00% - [Best Thread 1
B Worst Thread 1 0.00% - ® Worst Thread 1
&Qet\b §o° y \(-\\'-‘P ég&\o“ é;;\é &%o“ &0-30‘\
9 @-‘2’ ¢ &? \\Q}/ o
6&\\ 2 ©
N Q

Alignment (Time)

Alignment (L2 Miss Rate)

3.5 7.00%
3 6.00%
2.5 5.00% -
2 4.00% -
M Best Thread 0 M Best Thread 0
1.5 3.00% -
1 m Worst Thread 0 2.00% - B Worst Thread 0
0.5 M Best Thread 1 1.00% - [Best Thread 1
0 . . T . mWorst Thread 1 0.00% - B Worst Thread 1
& & By & & N & & _ P & & & &
&é\ & y & zz??o n’s‘o @\0 & e‘i’é\ & © & e?"k\o \o"’é\ &\o @*\
"5} & &) X7 \Q}/ N ‘)° ‘6"@ o) & \q} / N
«© A @ W > %
Q & o Q & oF
& q & q
SparselU (Time) SparselU (L2 Miss Rate)
0.18 18.00%
015 16.00%
0.14 14.00%
”;f 12.00%
il M Best Thread 0 1;—& M Best Thread 0
0.06 B Worst Thread 0 6.00% B Worst Thread 0
0.04 4.00%
- Y
ee Best Thread 1 S ¥ Best Thread 1
0 - B Worst Thread 1 0.00% B Worst Thread 1
o o b o o o &
o o ks of i o 20
& o < & & x@ &
‘? Q"& o ';_}i./ 5 - ae s
o ti oo

26

—

Hybrid Machine Learni ngModelmg

“ Why machine learning?
“Measurements obtained from the runtime by external tool regardless of the
used runtime or compiler

=384 data instances with 14 selected features (Overwhelming for human
processing)

¢ Meaning of hybrid in our context?

=Unsupervised learning (K-Means clustering)
=Supervised learning

* Major challenges?

=Complex search space
=Limited # task-based programs for training
“Features selection

+» Java tool based on the weka API

27

Classification Process for Prediction

(.f'"'_'___"""‘h..‘
“--,______________,,.--’
A NN, SVM. Forest,
Natve Classifiers
“--‘._______________,.,.a"
Unseen Data
5 apps/240 mstances

i ik - 129 43 38 400.030.120.03
iming/Cache miss rate fea

Suspend Execution Finish Creation Barder Paralld Single Class

! ;
1,37E+02 4.mE+n13'MEE W 0025 0051 0.103 1 SEhE‘:(hll].'[lgrI
1,70E+0
6.17E+02 2.00E+02 2 178 0025 0.112 00565 3
2.30E+D
1.35E+02 2.60E+01 1 M 0291 0228 0.0242 2

2

Rank

Attribute

1.519

C suspend

1.18

C_execution

1.169

c parallel

0.987

t finish

0.919

t creation

0.895

t suspend

0.841

c_single

0.83

C_creation

0.793

t execution

0.678

c_finish

0.66

c_ barrier

0.5

t parallel

0.489

t barrier

0.488

t single

28

Training Data Improvement - -

Predicted class

simple | public | default
simple | 92 () 0
Actual class public | 0 52 0
default | 0 0 48
Improvement Improvement
(AMD) (Intel)
Fib 26% 35%
Health 30% 38%
Sort 21% 19%
FFT 10% 13%
Ngueens 9% 18%
Strassen 8% 8%
Alignment 3% 3%
Sparse 4% 5% 29

Normalized
data

.-I‘ g

Training. Data Beh awor

0.4 —
U == Alignment
\ =i S0rt
0.3 2
\ == Ngueens
51 —#—Health P
\ —&—5trassen / \(
- 1 vy
L 7oy]
A__, —FFT
0.15 - va \ ///
0.1 N '\ :
D.DE M‘\‘ ‘*_w FI,-.."Z‘
/’ ~ WY [/
0 I - W, : \
|] T T T I I
d & X O @ 2 D SN S A O e
& &P Q_ql\‘ﬂ $0 t{@ t'ﬁ \‘F‘% er R i @e q.:‘:’p 6“& {% -{ﬁ
;,__ﬁa‘? & & . F & 2 &S L & ?,b 3
b E‘#- e W s 'Ea+ o (VS
Ry ir

Runtime Event

30

Portable P'ediction Behav

93% prediction accuracy

e

Gk

Program Predicted Class

UTS 24 public(1)

Floorplan 16 simple(0),8 default(2)
EPCC 24 public(1)

\Whetstone 24 simple(0)

MD 24 simple(0)

=—#=2 ThreadsIntel
=f=12 Threads Intel

=de—=24 Threads Intel
=i Threads AMD
=12 Threads AMD

0.8 ~

—4—2 Threads Intel
=il=12 Threads Intel
—gie—24 Threads Intel

=i} Threads AMD
=e=12 Threads AMD

=@§—24 Threads AMD

MD Application

UTS Benchmark

Performance Improvement: for

new/unseen Applications

RN B Predicted-Default 100% m Predicted-Default
m Predicted-GCC i -
- redicte 20% B Predicted-GCC
M Predicted-PGI I Predicted-PGI
- M Predicted-Intel B0% redicted-intel

40%

20% -

0% -
0% - Floorplan MDB Whetstone EPCC

Floorplan MD@ Whetstone EPCC -20%

-20%
-40%
e -60%
-60% -80%
_80% F100%

AMD Opteron Intel Xeon

+A. Qawasmeh, A. Malik, B. Chapman. “Adaptive OpenMP Task Scheduling Using
Runtime APIs and Machine Learning”, In 2015 IEEE 14th ICMLA conference. Dec,32
2015, Miami, Florida, USA. (Accepted with 25% acceptance rate)

Summary/Future Work

Summary and Future-Work -

| proposed a new open-source API for OpenMP task
profiling in OpenUH

| developed a reliable OpenMP profiling tool for capturing
useful low-level runtime performance measurements.

d my performance framework to perform a
rehensive scheduling analysis study

| built and evaluated a portable framework (APARF) for predicting the
optimal task scheduling scheme that should be applied to new, unseen
applications.

. Predict energy consumption behavior at the fine-grain level

34

2017

W (1]

2015

B [c7]

B [c5]

B [c5]

2014

B [c4]

W [c3]
2013
W [c2]

2012

W [c1]

=
2

=
2

=
A

=
2

=
A

=
A

=
2

A

= dblp

A computer science bibliography

Ahmad Qawasmeh, Maxime R. Hugues, Henri Calandra, Barbara M. Chapman:
Performance portability in reverse time migration and seismic modelling via OpenACC.
IJHPCA 31(5): 422-440 (2017)

Ahmad Qawasmeh, Abid Muslim Malik, Barbara M. Chapman:
Adaptive OpenMP Task Scheduling Using Runtime APIls and Machine Learning. ICMLA 2015:
889-895

Millad Ghane, Abid Muslim Malik, Barbara M. Chapman, Ahmad Qawasmeh:
False Sharing Detection in OpenMP Applications Using OMPT APIL. IWOMP 2015: 102-114

Ahmad Qawasmeh, Barbara M. Chapman, Maxime R. Hugues, Henri Calandra:
GPU technology applied to reverse time migration and seismic modeling via OpenACC.
PMAM@PPoPP 2015: 75-85

Ahmad Qawasmeh, Abid Muslim Malik, Barbara M. Chapman:
OpenMP Task Scheduling Analysis via OpenMP Runtime APl and Tool Visualization. IPDPS
Workshops 2014: 1049-1058

Anilkumar Nandamuri, Abid Muslim Malik, Ahmad Qawasmeh, Barbara M. Chapman:
Power and energy footprint of openMP programs using OpenMP runtime API. E25C@5C
2014: 79-88

Ahmad Qawasmeh, Abid Muslim Malik, Barbara M. Chapman, Kevin A. Huck, Allen D. Malony:
Open Source Task Profiling by Extending the OpenMP Runtime APIL. [WOMP 2013: 186-199

Ahmad Qawasmeh, Barbara M. Chapman, Amrita Banerjee:
A Compiler-Based Tool for Array Analysis in HPC Applications. ICPP Workshops 2012: 454-463

Acknowledgement.

s HPCTools Group at the University of Houston, Texas, USA

36

Thank You !

	ADAPTIVE TASK SCHEDULING USING LOW-LEVEL RUNTIME APIs AND MACHINE LEARNING
	Outline
	Motivation and Goal
	Main Contributions
	Slide Number 5
	Shared Memory: Logical View
	OpenMP API
	OpenMP Tasks
	OpenMP Task Scheduling
	Performance Observation
	OpenMP performance APIs before OMPT
	Slide Number 12
	Related Work (Adaptive Scheduling)
	Characterization using Machine Learning
	Slide Number 15
	Task Execution Model in OpenUH
	Slide Number 17
	�Overhead Analysis in OpenUH RTL�
	Adaptive Scheduling Through APARF
	Interaction Example in APARF
	APARF OpenMP Profiling Tool
	OpenMP Task Scheduling Analysis
	Analysis Setup in OpenUH
	Analysis Setup
	Similarity Among Benchmarks
	Similarity Among Benchmarks
	Hybrid Machine Learning Modeling
	Classification Process for Prediction
	Training Data Improvement
	Training Data Behavior
	Portable Prediction Behavior
	Performance Improvement for new/unseen Applications
	Slide Number 33
	Summary and Future Work
	Slide Number 35
	Acknowledgement
	Slide Number 37

