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”Motivation and Background

“ted Work

eAPARF Framework Implementation (OpenUH)

= OpenMP tasking profiling APIs
= OpenMP profiling tool and performance analysis
= A hybrid machine learning model for adaptive prediction

@ Analysis and Evaluation

“mary and Future work




Motivation and Goal
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Predicting the optimum task scheduling scheme for a
given OpenMP program by developing Adaptive and

portable framework
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Main Contributions.

| proposed a new open-source API for OpenMP task profiling in
OpenUH RTL

| developed a reliable OpenMP profiling tool for capturing
useful low-level runtime performance measurements.

loited my performance framework to perform a

rehensive scheduling analysis study

| built and evaluated a portable framework (APARF) for predicting the
optimal task scheduling scheme that should be applied to new, unseen
applications.
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Shared Memory: Logicél- Vlew

SMP Vs cc-NUMA
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OpenMP APl .~

* A standard API to write parallel shared memory applications in C, C++,
and Fortran

% Consists of compiler directives, runtime routines, environment variables
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http://www.openmp.org
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OpenMP Tasks

*» A task is an asynchronous work unit
= C/C++: #pragma omp task
= Fortran: !$Somp task

*» Contains a task region and its data environment

int fib(int n) {

Int X, y;

If (n <2) return n;

else {
#pragma omp task shared(x)
X = fib(n-1);
#pragma omp task shared(y)
y = fib(n-2);
#pragma omp taskwait
return X +y;

}
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Performance Observation -
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Profiling vs. Tracing
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OpenMP performance APIs befOreMPT

“* POMP (Profiler for OpenMP)

= Instrumentation calls inserted by a source-source tool (TAU, KOJAK,
Scalasca)

= Can notably affect compiler optimizations

“ ORA (Collector API)

= Sampling of call stack
= Originally has 11 mutually exclusive states, 9 requests, and 22 defined
callback event

= Was accepted as a white paper by ARB
Introduced before tasks and implemented in OpenUH RTL

X OMPT (OpenMP Tool Interface)

11



Related Work



Related Work (Adaptive Sthedmmg

** An OpenMP scheduler was proposed to adapt the granularity
of work within loops depending on data placement info.

¢ Some previous works have focused on disabling threads in
parallel loops in the presence of contention.

¢ A thread scheduling policy embedded in a GOMP-based
framework was proposed for OpenMP programs featuring
irregular parallelism.

s Another area of research aims to reduce scheduling overhead
by increasing task granularity by chunking a parallel loop or

by using a cut-off technique
13
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Characterization using Machine'Learning

**Machine learning was used to characterize programs in
representative groups

M
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Automatic Portable and
Adaptive Runtime
Feedback-Driven

(APARF) Framework



task created

Placed on tail of the
thread’s untied queue

READY

__ompc_task_switch:
execyte task removed

__ompc_add _task_to_pool:
adds task into the task pool

__ompc_task_exit:

__ompc_remove_task_from_pool
removes a task from the pool, and switches

decrement parent’s
num_children

RUNNING

__ompc_task_create:
adds child tasks to the
task pool
__ompc_task_wai

num_children ==

(other task) __ompc_task_exit

WAITING num_children == 0 ?

__ompc_remove_task_from_pool
removes a task from the pool, and switches
toit

http://web.cs.uh.edu/~openuh/

(other_task)

[ task ]
destroyed

| _ompc_task_exit
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http://web.cs.uh.edu/%7Eopenuh/

OMPT and ORATasking Implementatlon

in OpenUH RTL ey

¢ proposed a tasking profiling interface in the OpenUH RTL as
an extension to the ORA before OMPT
= Task creation

Task execution

Task completion

Task switching

Task suspension

s OMPT Is a super-set of ORA

= Support sampling of call stack with optional trace event generation.

=  State support, task creation and completion are mandatory, while the
others are optional

* Adapting my tasking APIs to be compatible with OMPT was
straightforward
17



Overhead Analysis in OpenUHTL
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Adaptive Scheduling Throu#gh:_-AP-ARF

— Scheduling scheme
b — OpenMP Program Adaptive
Feedback

Class 1 Class 2 Class 3




Interaction Example mAF’AR F

OpenMP Runtime  OMPT APARF Profiling Tool

Request: Initialize monitoring

Begin tracking states/Task-1Ds
Notification: Success/Failure

Request: Current state/Task-1D

Query: Current state/Task-1D
P

Obtain Current state/Task-ID

Request: Registerevent A

Activate monitoring event A

Call back: event A

“ Ahmad Qawasmeh, Abid Malik, Barbara Chapman, Kevin Huck, Allen Malony,
"Open Source Task Profiling by Extending the OpenMP Runtime API",

IWOMP2013, pp. 186-199, September 2013, Canberra, Australia. 20



APARF OpenMP Profi 1|ngT00|

*Implements a single handler to handle all events.

ssInitializes the API to establish a connection with the runtime.
s»Captures useful low-level runtime performance measurements.
s Timing, HWCs, and Energy/power sensors were integrated.

int fib(int n) {
Int X, v;

If (n <2) return n;
else { / f \
;

#pragma omp task shared(x)

X = fib(n-1); ’;Lm - 1 - y

#pragma omp task shared(y)

y = fib(n-2); ‘~ /
#pragma omp taskwait -{ \ ~
return x +y; :' 5 )

} 21




OpenMP Task Scheduling Analysis

An OpenMP task scheduler can be distinguished based on:

v" Queue organization
v' Work-stealing capability.
v" Order in which a task graph is traversed

“ucial issues should be managed by a task scheduler:

v' Data locality
v' Load balancing

@

v" Queue contention, work stealing, synchronization overheads
v' Task granularity (coarse vs. fine)

Conflicting Goals:

22



Analysis Setup in Op enUH

formed a detailed analysis study

s 200 scheduling schemes were applied to eight BOTS benchmarks
s Three different sets of threads were used with two input sizes
*» Initial observation: categorized into three representative groups

Platform Facts

AMD cluster | an x86-64 cc-NUMA Linux system with a four 2.2
GHz 12-core AMD Opteron processors (48 cores
total) and 512 KB L2 cache per core. and 10 MB
L3 cache shared by all cores

Intel cluster | an x86-64 ce-NUMA Linux system with two 2.5
GHz 12-core Intel Xeon processors (24 cores total)
and 512 KB L2 cache per core, and 15 MB L3 cache
shared by all cores

23



Analysis Setu p £

“We have used our performance framework

The captured runtime events are: task suspension, task
execution, task completion, task creation, explicit/implicit barrier,
parallel-region, and single/master/loop region

v' Exploiting data locality can best be expressed by demonstrating
the cache behavior (cache misses, CPI, TLB)

v' Maintaining load balancing was evaluated by obtaining the
timing distribution among threads for each captured event.

A. Qawasmeh, A. Malik, B. Chapman. “OpenMP Task Scheduling Analysis via
OpenMP Runtime API and Tool Visualization”, In 2014 IEEE 28th IPDPSW. pp.
1049 - 1058, May, 2014, Phoenix, Arizona, USA. 24
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Hybrid Machine Learni ngModelmg

“ Why machine learning?
“Measurements obtained from the runtime by external tool regardless of the
used runtime or compiler

=384 data instances with 14 selected features (Overwhelming for human
processing)

¢ Meaning of hybrid in our context?

=Unsupervised learning (K-Means clustering)
=Supervised learning

* Major challenges?

=Complex search space
=Limited # task-based programs for training
“Features selection

+» Java tool based on the weka API

27



Classification Process for Prediction
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Training Data Improvement - -
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Portable P'ediction Behav

93% prediction accuracy

e

Gk

Program Predicted Class

UTS 24 public(1)

Floorplan 16 simple(0),8 default(2)
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Performance Improvement: for

new/unseen Applications
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+A. Qawasmeh, A. Malik, B. Chapman. “Adaptive OpenMP Task Scheduling Using
Runtime APIs and Machine Learning”, In 2015 IEEE 14th ICMLA conference. Dec,32
2015, Miami, Florida, USA. (Accepted with 25% acceptance rate)



Summary/Future Work



Summary and Future-Work -

| proposed a new open-source API for OpenMP task
profiling in OpenUH

| developed a reliable OpenMP profiling tool for capturing
useful low-level runtime performance measurements.

d my performance framework to perform a
rehensive scheduling analysis study

| built and evaluated a portable framework (APARF) for predicting the
optimal task scheduling scheme that should be applied to new, unseen
applications.

. Predict energy consumption behavior at the fine-grain level

34
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