

Big Data Analytics in Electric Power Distribution Systems

Dr. Nanpeng Yu Department of Electrical and Computer Engineering WCH 428 nyu@ece.ucr.edu

951.827.3688

UNIVERSITY OF CALIFORNIA, RIVERSIDE

Outline

- > Why do we focus on electric power distribution systems?
- > Big data in power distribution systems
 - > Volume, Variety, Velocity, and Value
- Big data applications in distribution systems
 - > Electricity Theft Detection, Detection of Electric Vehicle
 - > Phase Connectivity Identification, Transformer to Customer Association
 - > Granular Load Forecast, Solar Adoption Forecast
 - > Predictive Maintenance

Why distribution systems?

- Increasing penetrations of distributed energy resources (DERs) in electric power distribution systems
 - E.g. California's transition to local renewable energy, 12,000 MW by 2020 (peak load 50,000 MW)
- > DERs
 - Rooftop solar PV systems (1.84 GW of installed capacity by June 2017)

Why distribution systems?

- Increasing penetrations of distributed energy resources (DERs) in electric power distribution systems
 - E.g. California's transition to local renewable energy, 12,000 MW by 2020 (peak load 50,000 MW)
- > DERs
 - > Energy storage systems
 - > In California 1,325 MW of energy storage will be integrated into the power system by 2020.

System	Applications & Revenue Streams	Technical Requirements	
Level		Typical	Typical Discharge
		Cvcles / Year	Duration
	13. Distribution Peak Shaving	20 to 50	1 to 4 hours
Distribution	14. Distribution Voltage Support	50 to 100	1 to 4 hours
	15. Distribution Power Quality	50 to 100	1 to 4 hours
	16. Retail Energy Time-Shift	20 to 50	15 min to 1 hour
	17. Energy Cost Minimization	N/A	N/A
Microgrid /	18. Microgrid Voltage Support	50 to 100	1 to 4 hours
Consumer	19. Microgrid Power Quality	50 to 100	1 to 4 hours
	20. Demand Charge Management	50 to 100	1 to 4 hours

Why distribution systems?

- Increasing penetrations of distributed energy resources (DERs) in electric power distribution systems
 - E.g. California's transition to local renewable energy, 12,000 MW by 2020 (peak load 50,000 MW)
- > DERs
 - > Electric vehicle
 - In Nov 2016, the cumulative sales of battery electric and plug-in hybrid sales in California hits 250,000 which accounts for 20% of global cumulative sales.

The need for advanced modeling, monitoring, & control of distribution systems!

- > The cold, hard facts about modern power distribution systems
 - Modeling
 - Incomplete topology information in the secondary systems (phase connection, transformer-to-customer mapping)
 - > Even the three-phase load flow results are unreliable.
 - > Monitoring
 - Most utilities do not have online three-phase state estimation for entire distribution network
 - Control
 - Focus on system restoration
 - Limited predicative and preventive control
 - > Volt-VAR control, network reconfiguration

Outline

- > Why do we focus on electric power distribution systems?
- > Big data in power distribution systems
 - Volume, Variety, Velocity, and Value
- > Big data applications in distribution systems
 - > Electricity Theft Detection, Detection of Electric Vehicle
 - > Phase Connectivity Identification, Transformer to Customer Association
 - > Granular Load Forecast, Solar Adoption Forecast
 - > Predictive Maintenance

Big Data in Distribution Systems: Volume

- > In 2015, the U.S. electric utilities had about 64.7 million AMI installations.
- By the end of 2016, almost 50% of the residential customers in the U.S. have AMI infrastructure.
- > The smart meter installation worldwide will surpass 1.1 billion by 2022.
- In 2012, the AMI data collected in the U.S. alone amounted to well above 100 terabytes. More than 2 petabytes of meter data in 2022.

Big Data in Distribution Systems: Variety

- > Advanced Metering Infrastructure
 - > Electricity usage (15-minute, hourly)
 - Voltage magnitude
- Geographical Information System
- Equipment Monitors
 - Asset health
- Census Data
 - Household variables: ownership, appliance, # of rooms
 - Person variables: age, sex, race, income, education
- SCADA Information
- Micro-PMU
 - > Time synchronized measurements with phase angles

Big Data in Distribution Systems: Velocity

- Sampling Frequency
 - AMI's data recording frequency increases from once a month to one reading every 15 minutes to one hour.
 - Micro-PMU hundreds (512) of samples per cycle at 50/60 Hz
- Bottleneck in Communication Systems
 - Limited bandwidth for zigbee network
 - Most of the utilities in the US receives smart meter data with ~24 hour delay
- Edge Computing Trend
 - > Itron and Landis+Gyr extend edge computing capability of smart meters
 - > Increasing data transmission range and computing capabilities of smart meters
 - > Centralized \rightarrow distributed / decentralized

Big Data in Distribution Systems: Value

- The big data collected in the power distribution system had utterly swamped the traditional software tools used for processing them.
- Lack of innovative use cases and applications to unleash the full value of the big data sets in power distribution systems.*
- Insufficient research on big data analytics system architecture design and advanced mathematics for petascale data
- It is estimated that the electric utilities around the world will spend \$10.1 billion on automated metering infrastructure (AMI) data analytics solutions through 2021.
- Start-up Companies
 - C3-IOT, Opower/Oracle, Autogrid
- > Risk of failing to adhere to data privacy and data protection standards.

* Nanpeng Yu, Sunil Shah, Raymond Johnson, Robert Sherick, Mingguo Hong and Kenneth Loparo, "Big Data Analytics in Power Distribution Systems" *IEEE PES ISGT*, Washington DC, Feb. 2015..

Outline

- > Why do we focus on electric power distribution systems?
- > Big data in power distribution systems
 - > Volume, Variety, Velocity, and Value
- > Big data applications in distribution systems
 - > Electricity Theft Detection, Detection of Electric Vehicle
 - > Phase Connectivity Identification, Transformer to Customer Association
 - > Granular Load Forecast, Solar Adoption Forecast
 - > Predictive Maintenance

Big Data Applications in Power Distribution Systems

Spatio-temporal Forecasting

Electric Load / DERs - Short-Term / Long-Term

Anomaly Detection

Electricity Theft, Integration of EV

Equipment Monitoring Predictive Maintenance Online Diagnosis

Customer Behavior Analysis

Customer segmentation, nonintrusive load monitoring, demand response

Network Topology and Parameter Identification

Transformer-to-customer, Phase connectivity, Impedance estimation

Electricity Theft Detection

Problem Definition

- Energy Theft: The activity of reducing electricity bill by altering the electricity consumption (physical / cyber)
 - > Physical: Bypassing the smart meter, tamper electricity meters
 - > Cyber: Hack into meters, communication network to change kWh readings
- > Why is it important? (Business Value)
 - According to Northeast Group, LLC, the world loses \$89.3 billion annually to electricity theft in 2015 (India \$16.2 billion).
 - In the North America energy theft costs between 0.5% and 3.5% of annual gross revenue.
 - B.C. Hydro estimates up to 3% of energy theft with 1500 'electrical diversions' caught in 3 years.
 - > Center Point estimates energy theft is 1% to 2%.

Electricity Theft Detection

- Primary Data Set
 - > Advanced Metering Infrastructure, SCADA, GIS
 - > Training data (energy theft cases)
- Solution Methods
 - Physical approach
 - > Technical loss model based method, state estimation based method
 - Drawback: assume all distribution network topology and parameters are known or can be estimated accurately. Meter readings are required for transformers as well.

Electricity Theft Detection

- Solution Methods
 - > Machine learning approach
 - > Unsupervised: anomaly detection on a single time series, supervised: classification
 - > Drawback: Many other factors lead to anomaly in usage pattern, biased training set

- > Hybrid approach
 - The voltage magnitude and electricity consumption of the customers under the same transformer must be in sync. (Kirchhoff Law). Consumption can be fitted with voltage data.
 - Large difference between estimated and metered electricity consumption indicated potential energy theft.

Case Study

- > Three customers are connected to the same center tapped transformer
- > Realistic customer smart meter data with energy theft introduced

- Which customer is stealing power?
- Answer: Customer 2!

Visualization of Energy Theft

Residual (Electricity Consumption Estimation)

Normalized Residual

Detection of Electric Vehicle

Problem Definition

- Identify which customer(s) have adopted electric vehicle
- Detect charging of electric vehicle and estimate the power consumption from charging activities.
- > Why is it important? (Business Value)
 - When buying a plug-in electric vehicle (PEV), or a plug-in hybrid electric vehicle (PHEV), the consumer has no obligation to inform the electric utility.
 - On average, a typical household draws 0.7 kW of load from their local power utility. EV draws up to 3.7 kW per hour. This presents a problem because one EV owner alone can indirectly add 4 household worth of load to a transformer.
 - Unexpected charging of electric vehicles can lead to overloaded assets in a distribution system and premature equipment failure.
 - Targeted demand response / EV charging program info can be distributed to the right group of customers.

Detection of Electric Vehicle

Primary Data Set

- > Advanced Metering Infrastructure, Customer Information System
- Census Data at Block Group Level (Income, age, vegetation level, No. Rooms.)
- Training data (customers who informed the utility about EV purchase)

Solution Methods

Outline

- > Why do we focus on electric power distribution systems?
- > Big data in power distribution systems
 - > Volume, Variety, Velocity, and Value
- > Big data applications in distribution systems
 - > Electricity Theft Detection, Detection of Electric Vehicle
 - > Phase Connectivity Identification, Transformer to Customer Association
 - > Granular Load Forecast, Solar Adoption Forecast
 - > Predictive Maintenance

Distribution System Topology Identification

- The distribution system topology identification problem can be broken down into two sub-problems
 - > The phase connectivity identification problem
 - > The customer to transformer association problem

Phase Connectivity Identification

Problem Definition

- Identify the phase connectivity of each customer & structure in the power distribution network.
- Very few electric utility companies have completely accurate phase connectivity information in GIS!
- > Why is it important? (Business Value)
 - Phase connectivity is crucial to an array of distribution system analysis & operation tools including
 - > 3-phase Power flow
 - Load balancing
 - > Distribution network state estimation
 - > 3-phase optimal power flow
 - > Volt-VAR control
 - > Distribution network reconfiguration and restoration

Phase Connectivity Identification

- Primary Data Set
 - > Advanced Metering Infrastructure, SCADA, GIS, OMS
 - > Training data (field validated phase connectivity)
- Solution Methods
 - Physical approach with Special Sensors
 - > Micro-synchrophasors, Phase Meters
 - Drawback: expensive equipment, labor intensive (\$2,000 per feeder), 3,000 feeders for a regional electric utility company (\$6 million)

Phase Connectivity Identification

Solution Methods

- > Integer Optimization, Regression and Correlation based Approach
 - > 0-1 integer linear programming (IBM)
 - Correlation/Regression based methods (EPRI)
 - Drawback: cannot handle delta connected Secondaries, low tolerance for erroneous or missing data, low accuracy and high computational cost
- > Data-driven phase identification technology
 - Synergistically combine machine learning techniques and physical understanding of electric power distribution networks.
 - > Unsupervised, supervised, and semi-supervised machine learning algorithm
 - High accuracy on all types of distribution circuits, (overhead, underground, phase-toneutral, phase-to-phase)

Transformer to Customer Association

Problem Definition

- > Correct the connection info between smart meters and transformers in GIS.
- The current transformer to customer association data is 40% 90% accurate in U.S. electric utilities' GIS.
- > Why is it important? (Business Value)
 - > Outage reporting
 - > Identify a potential source of a transformer issue
 - > Sizing transformers
 - > Preventive maintenance of transformers
 - > Electric vehicle hosting capacity estimation

Transformer to Customer Association

Primary Data Set

- > Advanced Metering Infrastructure, SCADA, GIS, OMS
- > Customer Information System, Asset Management System
- > Training data (field validated transformer to customer mapping)

Solution Methods

- > Physical Approach
 - Field validation (visual inspection for overhead configuration)
 - Drawback: time consuming, labor intensive, distribution network topology undergoes constant change
- > Pure Data Driven Approach
 - > Linear regression, logistic regression, correlation based method
 - > Voltage magnitude and GIS information are inputs

Transformer to Customer Association

Hybrid Solution

- > Nonlinear dimension reduction with density based clustering
 - > Real-world data reside on a lower-dimensional space, customers connected to the same transformer are close to each other on the lower-dimensional feature space.

> Physically inspired method

- Minimum weight spanning tree based method, find the minimum weight spanning tree with second order voltage covariance as the edge weight.
- > (A subset of edges of a connected undirected graph that connects all vertices, without any cycles and with the minimum possible total edge weights.)

Case Study

UCR

Outline

- > Why do we focus on electric power distribution systems?
- > Big data in power distribution systems
 - > Volume, Variety, Velocity, and Value
- > Big data applications in distribution systems
 - > Electricity Theft Detection, Detection of Electric Vehicle
 - > Phase Connectivity Identification, Transformer to Customer Association
 - > Granular Load Forecast, Solar Adoption Forecast
 - > Predictive Maintenance

Granular Load Forecasting

Problem Definition

- Electric utilities have been doing territory wide load forecasting with regression / time series / neural network models.
- However, load forecasting at feeder / lateral / service transformer level has been done in an ad hoc manner.
- > Why is it important? (Business Value)
 - > Transformer sizing
 - > Distribution circuit upgrades
 - > Distribution system planning
 - > Resource dispatch in power distribution systems
 - > Distribution network reconfiguration and restoration

Granular Load Forecasting

- > Primary Data Set
 - Advanced Metering Infrastructure, GIS
 - > Customer Information System
 - > Census Data at Block Group Level (Income, age, vegetation level, No. Rooms.)
- Solution Methods
 - > Off-the-shelf Time Series Models
 - Vector Autoregressive Moving Average Model (VARMA)
 - > Drawback: Curse of dimensionality, the number of parameters explode
 - Spatio-temporal Models
 - > Extended Dynamic Spatial-temporal model
 - > Exploit the spatial correlations of the electric load data

UCR

Granular Load Forecasting

Extended Dynamic Spatial-temporal model (DST)

- The correlation between feeder loads is stronger when both spatial lag and time lag are small
- > The correlation drops quickly when the spatial lag increases with time lag fixed at 0.
- > DST model: $y(t) = v + (\Lambda + \Gamma W \Theta) y(t 1) + n(t)$
- > Spatial weight matrix W characterizes the spatial correlation among different feeders.
- Exponential distance weights: $w_{ij} = \exp(-\alpha h_{ij})$
- Neural Network Model
 - > Feedforward neural network
 - > Recurrent and Recursive Nets
 - Specialized for processing sequential data

UCR

Case Study

Average forecasting performance of VAR(1) and extended DST models

Model	VAR(1) model	Extended DST model
Average RMSE [kWh]	554.64	490.39
Average MAPE	12.26%	10.63%

Solar PV Adoption Forecast

Problem Definition

- Perform spatial-temporal solar Photovoltaic system adoption forecast at the customer / feeder level.
- > Separate commercial and residential solar PV adoption forecast models.
- > Why is it important? (Business Value)
 - More accurate forecast of distributed solar PV adoption will greatly facilitate distribution system planning.
 - Spatial-temporal solar PV adoption forecast serves as an important input to hosting capacity analysis.
 - A solar PV adoption model is a useful tool for policy evaluation (federal and state incentive programs, CSI, ITC).
 - Understanding the drivers behind the solar PV adoption could help policy makers / utilities improve design of future renewable energy incentive programs.

Solar PV Adoption Forecast

Primary Data Set

- > Advanced Metering Infrastructure, GIS, Customer Information System
- > Census Data, Historical PV adopter information, Financing
- > Retail Rate, Historical Installed PV Cost, Incentive Program Data, Roof Info
- Solution Methods
 - > Discrete Choice Experiment with Surveys (EPRI)
 - > Identify attributes that influence consumers' decisions.
 - The attributes were tested with a focus group and then used to develop questions for surveys administered to more than 2,500 customers.
 - > The "choice" mode is built for determining the combinations of attributed likely to drive customer preference.

Solar PV Adoption Forecast

Bass Diffusion Model

- > The basic Bass model is well-established to model the innovation and technology adoption in any market.
- The probability of adoption of a new product at time T given that it has not yet been adopted would depend linearly on two forces, innovation p and imitation q.

- > We shall call x(t) "current marketing effort", reflecting the influence of market factors on the adoption rate at time t.
- > x(t) could represent energy savings, government incentives, etc.

Outline

- > Why do we focus on electric power distribution systems?
- > Big data in power distribution systems
 - > Volume, Variety, Velocity, and Value
- > Big data applications in distribution systems
 - > Electricity Theft Detection, Detection of Electric Vehicle
 - > Phase Connectivity Identification, Transformer to Customer Association
 - > Granular Load Forecast, Solar Adoption Forecast
 - > Predictive Maintenance

Predictive Maintenance - Transformer

Problem Definition

- The lack of data and knowledge about the transformers prevents utilities from performing predictive maintenance until the transformer fails, resulting in interruption in service to one or more customers.
- Assign and maintain a health index score, and predict remaining life for transformers.
- > Why is it important? (Business Value)
 - Reduce System Average Interruption Duration Index (SAIDI) index and enhance system reliability.
 - > SAIDI = $\frac{\text{Total Duration of Interruptions for a Group of Customers}}{\text{Number of all Customers}}$
 - > Utilities can maintain the same level of overall maintenance activity on the system while shifting from reactive maintenance to preventive maintenance.

Predictive Maintenance - Transformer

Primary Data Set

- **GIS**, Weather, Climate Zone, OMS, AMI, SAP (Manufacture, Age, etc.)
- SCADA, Historical Failures, Lightning Data
- Solution Methods
 - Basic aging algorithms and thermal models developed by IEEE and International Electrotechnical Commission (IEC)
 - > Supervised, Semi-supervised ML

Historical recorded asset information

Known asset failure / reliability cases

Identified failure-related parameters: Ambient Temperature: <x> Equipment vintage: <x> Bottom-up peak load versus capacity: <x> Weather forecast: <x> ...

Thank You

- Contact information
 - > Dr. Nanpeng Yu
 - Department of Electrical and Computer Engineering, UC Riverside, United States
 - > Phone: 951.827.3688
 - > Email: <u>nyu@ece.ucr.edu</u>
 - > Website: <u>http://www.ece.ucr.edu/~nyu/</u>

Big Data Applications in Short-term Operations

- Short-term Spatio-temporal Forecasting
 - Load forecast*
 - > Solar PV forecast
 - > Demand Response forecast
- Anomaly Detection
 - > Energy theft detection
- Estimation
 - AMI data-driven Three-phase State Estimation[†]
- Distribution System Visualization

* Jie Shi and Nanpeng Yu, "Spatio-temporal modeling of electric loads" to appear in 49th North American Power Symposium, pp.1-6, Morgantown, WV, 2017.

Xiaoyang Zhou, Nanpeng Yu, Weixin Yao and Raymond Johnson, "Forecast load impact from demand response resources" IEEE Proceedings, Power and Energy Society General Meeting, pp. 1-5, Boston, USA, 2016.

⁺ Yuanqi Gao and Nanpeng Yu, "State estimation for unbalanced electric power distribution systems using AMI data" The Eighth Conference on Innovative Smart Grid Technologies (ISGT 2017), pp. 1-5, Arlington, VA.

Big Data Applications in Long-term Planning

- > Distribution Network Topology Identification
 - > Transformer-to-customer association
 - Phase connectivity identification* [‡]
- > Customer Segmentation
- Nonintrusive Load Monitoring
- Long-term Spatio-temporal Forecasting
 - Solar PV Adoption Forecast[†]
 - EV Penetration Forecast

Equipment Preventive Maintenance

* W. Wang, N. Yu, B. Foggo, and J. Davis, "Phase identification in electric power distribution systems by clustering of smart meter data" *15th IEEE International Conference on Machine Learning and Applications* (ICMLA), pp. 1-7, Anaheim, CA, 2016.

 ^{*} W. Wang and N. Yu, "AMI Data Driven Phase Identification in Smart Grid," the Second International Conference on Green Communications, Computing and Technologies, pp. 1-8, Rome, Italy, Sep. 2017.
[†] W. Wang, N. Yu, and R. Johnson "A model for commercial adoption of photovoltaic systems in California" *Journal of Renewable and Sustainable Energy*, Vol. 9, Issue, 2, pp.1-15, 2017.