
DBMS Support
for Big Live
Data
MALCOLM CROWE AND FRITZ LAUX

1

Malcolm.Crowe@uws.ac.uk
Fritz.Laux@Reutlingen-University.de

Components proposed

 A syntax for virtual tables: “REST-Views”

 With an optional table listing similar remote DBS

 A vendor-neutral HTTP transport for linking

 Using simple SQL (minimising special features)

 Clever transformations for complex queries

 Generated automatically from original view def

 Reversible transformations for alignment

2

Big Live Data

 If your data originates in lots of databases

 You could copy the data centrally

 Extract-Transform-Load/Big Data

 But if it keeps changing this is not good

 Much better to read just what we need now

 And leave data where it is being maintained

 So suppose our data is remote

 A table’s rows come from different databases

 E.g. Sales or product data from different companies

3

Data is not owned by us

 Much of “Big Data” is randomly harvested

 Schemaless, unstructured, for “exploration”

 And we didn’t arrange it with anyone

 So we have really no idea of semantics

 With GDPR there will be less such data

 Instead we should discuss with providers

 What data they are able/willing to share

 And how we can best make use of it

 Subject to their restrictions on volume, intrusion

4

Such negotiations cost

 Once we have settled what we want

 We don’t want to keep going back

 Our DBMS should avoid this need

 No programming or complex protocols

 Just automatic transformation of views

 We have no detailed knowledge of data

 So we just minimise what we get sent

 By intelligently querying the remote DB

 So: they agree to supply us VIEWS

 E.g.: We are government/UN/group HQ/admin

5

Use HTTP and Json

 Instead of proprietary DBMS connectors

 They give us a login ID to access the data

 And we give them a tiny Web server WS

 Such interfaces are easy to write

 We POST SQL statements over HTTP/HTTPS

 Providing the credentials they have given

 WS uses their DBMS connector to execute

 And send us the results in Json format

 We are going to make this lightweight

6

A derived table

CID A B C …

D1

D1

D2

D3

D3

D3

7

D1

D2

D3

Columns from D’s renamed and values probably transformed

Derived = not actually stored centrally

(Contributors take responsibility for renaming columns and
transforming data to suit us as their schemas will all be different)

Contributing databases

 Contributors provide data in a given form

 On request, using HTTP with REST/JSON format

 They probably don’t have it in this form

 So they create a VIEW with the right columns

 Values probably requires some transformation

 Make it available with a given URL

 With access permissions for our view

 Possibly they might allow some updates

8

Defining a contribution

 Probably each contributor creates a VIEW

 Out of data from one or more actual tables

CREATE VIEW (A,B,C..) AS ….

9

A B C …

Centrally we then have

 The row type CID,A,B,C,..

 The list of contributors with their URLs

CREATE VIEW DT OF (CID..,A..,B..,C..) AS GET
USING T

10

CID URL

D1 URL for D1’s data

D2 URL for D2’s data

D3 URL for D3’s data

T:

 OF gives DT row type (with column data types)

 All columns from T except the last (CID here)

 The remaining columns specify the remote view

Division of responsibility 11

C

DBMS

Views contributed over HTTP transformed
to a common schema

Contributed data remains under C’s
control – C retains responsibility

C interprets requests for change and
Inverts the transformations

HTTP

C’s API

No programming!

API

View configures HTTP access

Change request sent to C

Transforming the query

 As defined the view has a simple table form

 But we don’t want to get even 1MB of data

 Only select required columns, apply filters

 Joins and aggregations get interesting

 We can perform many aggregations remotely

 So we only get a few rows (maybe just one)

 A query can join these with local data

 And optimising such a join is a great idea

 Always leave getting data to after analysis

12

For example

 If W is defined as a join with remote data V

 Aggregating V’s data, GROUP BY a,b,..

 The grouping operation can be remote

 Provided we also group by the joined columns

 View definitions, subqueries, joins

 All lead to known matching columns, exprs

 We can use these when optimising

 We will have some predefined views, joins

 That consume data coming from the remote V

13

Query Rewriting 101 14

 SQL query is a recursive composite structure

 CursorSpecification

 QueryExpression (union/intersect etc)

QuerySpecification (Select List)

 TableExpression (Aggregation|Grouping)

 Table | View | SubQuery

 CursorSpecification

 …

 Select items can contain query expressions

 Filters (where conditions) can go anywhere

T

