

To launch Bopen a	a shell in Unix/Linux or a command line ir	nterface
	. At the prompt, type R <return></return>	lionado
gigi@hp-850g2-lavazza: ~ File Edit View Search Terminal Help gigi@hp-850g2-lavazza	r.	_ D X
	3-09-25) "Frisbee Sailing" he R Foundation for Statistical Computing linux-gnu (64-bit)	
You are welcome to re	nd comes with ABSOLUTELY NO WARRANTY. edistribute it under certain conditions. 'licence()' for distribution details.	
Natural language su		
Type 'contributors()'	project with many contributors. ' for more information and to cite R or R packages in publications.	
	me demos, 'help()' for on-line help, or n HTML browser interface to help.	
>		

THIN HYTER	pace: is it	USETUI ?
 Not necessarily 		
 I work on R progra 		
Continuously s		
 Write results to So, I hardly ever no 		

Exploration and Analysis of Software Engineering Data with R

	Data frames		
can have d <- c(e <- c(f <- c(mydata	e different modes (nu (1,2,3,4) ("red", "white", (TRUE,TRUE,TRUE,F <- data.frame(d,	FALSE)	3

Useful Functio	ons
· · · · · · · · · · · · · · · · · · ·	
Name	effect
length(object)	number of elements or components
str(object)	structure of an object
class(object)	class or type of an object
names(object)	names
c(object, object,)	combine objects into a vector
<pre>cbind(object, object,)</pre>	combine objects as columns
rbind(object, object,)	combine objects as rows
ls()	list current objects
rm(object)	delete an object
newobject <- edit(object)	edit copy and save a new object
fix(object)	edit in place
L. Lavazza @ ICSEA 2018 21	7 Exploration and Analysis of Software Engineering Data with R

シネク	P	A INSUB	C	Data	ase	et ir	mp	ort	exa	ımp	le						
	Le	et us	imp	ort tł	ne da	ata	from	n file	cocc	omo.o	csv						
coco	mo81.c	sv - Libre	Office	Calc													
<u>F</u> ile	<u>E</u> dit	<u>V</u> iew <u>I</u> r	nsert F <u>o</u>	ormat <u>1</u>	ools <u>D</u>	ata <u>W</u>	indow	<u>H</u> elp									
	• 🗎	- 🖾			8 8	ABC	eec 🎖	6 🖻 🛍	• 🏄	$ \phi_{h} $ =	1 - 18		- S	1 0		?	
		and loss for		10	- A		A			al 6 .						m	
	Libe	eration Sa	ins 🔻	10	• •	A !		문 문			% .000 i				· <u>•</u>		
A1		~	f (x)	Σ =	rely												
	A	В	С	D	E	F	G	н	1	J	К	L	м	N	0	Р	Q
				time		virt	turn	acap	aexp	рсар	vexp	lexp	modp	tool	sced	loc	actual
2	0.88	1.16	0.7		1.06					1.17			1.24	1.1			2040
3	0.88	1.16			1.06	1	1.07			1			1.1	1	1		
4	1 0.75	1.16		1		0.87 0.87				0.86			1.24	0.91	1.04		
6	0.75	0.94	0.7	1		0.87	1			0.86			1.24				
7	0.88	0.94			1.21	0.07	1						1.24				
8	0.75	1	0.05	1			0.87						0.91		1		
9	1.15	0.94	1.3	1.66			1			1			1.1				
10	1.15	0.94	1.3	1.3			1			0.86			0.91				
11	1.4	0.94	1.3		1.56		1.07			0.86			1				
12	1.4	0.94	1.3		1.56		1.07		0.82	0.86	0.9	1	1	1	1	32	218
13	1.15	0.94	1.3	1.11	1.06	1	1	0.86	0.82	0.86	1	0.95	0.91	1	1.08	37	201
14	1.15	0.94	1.3	1.11	1.06	1.15	1	0.71	1	0.7	1.1	. 1	0.82	1	1	25	79
15	1.15	0.94	1.65	1.3	1.56	1.15	1	0.86	1	0.7	1.1	1.07	1.1	1.24	1.23	3	60
16	1.4	0.94	1.3	1.3	1.06	1.15	0.87	0.86	1.13	0.86	1.21	1.14	0.91	1	1.23	3.9	61
17	1.4	1	1.3	1.3		1				0.86			1				
18	1.4	1	1.3	1.3	1.56	1	0.87	0.86	0.82	0.86	1	. 1	1	1	1	3.6	9
L.	Lavaz	za @ 10	CSEA 2	2018			- 3	2 -	E	xploratio	on and A	Analysis	of Softw	are En	igineerii	ng Dat	a with R

Descriptive statistics code n=length(dfDataset[,1]) cat("\nThe dataset contains", n, "datapoints\n") locMean=mean(dfDataset\$loc) locMedian=median(dfDataset\$loc) locSd=sd(dfDataset\$loc) locMin=min(dfDataset\$loc) locMax=max(dfDataset\$loc) cat("Mean KLoC =", locMean, "stdev =", locSd, "\n") cat("Median KLoC =", locMedian, "\n") cat("KLoC range = [", locMin, ",", locMax, "]\n") L. Lavazza @ ICSEA 2018 Exploration and Analysis of Software Engineering Data with R - 39 -

estimatio	onErrors=dfDataset\$actual-
	exp(modelIntercept)*dfDataset\$loc^modelCoeff
ARs=abs(e	estimationErrors)
par(mar=c	c(1.1, 4.1, 3.1, 2.1))
<pre>boxplot(#</pre>	ARs, ylab="Absolute residuals [PM]",
n	<pre>main="COCOMO log-log model of effort vs. size")</pre>
abline(h=	=0, col="gray")
points(me	ean(ARs), pch=23, bg="blue")
cat("Medi	ian absolute residual =", median(ARs), "PM \n")

the software to be	developed as	elopment effort depends on the size of swell as on its complexity.
 Size [KLoC] 		sed on two variables:
 Required relia 	bility (COCON	IO cost driver "rely")

residuals=0	·()	
idxes=c(1:	.,	
set.seed(12	345)	
for(it in 1	:10){	
	<pre>mple(idxes) # rand</pre>	
	Perteration=floor(n	numPoints/10)
for(j in	1:10){ see next slide	
} # 5	ee next slide	
J L		
boxplot(res	iduals, main="COCOM	<pre>40 log-log model of effort vs Size&rely"</pre>
	iduals, main="COCOM b="residuals")	MO log-log model of effort vs Size&rely"
yla		MO log-log model of effort vs Size&rely",
yla	b="residuals")	MO log-log model of effort vs Size&rely"
yla	b="residuals")	MO log-log model of effort vs Size&rely"
yla	b="residuals")	MO log-log model of effort vs Size&rely"
yla	b="residuals")	MO log-log model of effort vs Size&rely"

Exploration and Analysis of Software Engineering Data with R


```
Wilcoxon sign rank test
wilcox_test <- function(ARmx, ARmy, mx_name, my_name, printout){</pre>
  trWe=wilcox.test(ARmx, ARmy, alternative = "two.sided", mu = 0, paired = TRUE);
  trWg=wilcox.test(ARmy, ARmx, alternative = "greater", mu = 0, paired = TRUE);
  trWl=wilcox.test(ARmy, ARmx, alternative = "less", mu = 0, paired = TRUE);
  pmax=max(trWe$p.value, trWg$p.value, trWl$p.value)
  if(pmax==trWe$p.value && pmax>0.05){
    if(printout) {
      cat("Wilcoxon sign rank test:", my_name,
           "'s absolute residuals are equal to ", mx_name,
          "'s (p-value=", trWe$p.value, ")\n")
    }
    return("=")
  }
  if(pmax==trWg$p.value && pmax>0.05){
    if(printout) {
      cat("Wilcoxon sign rank test:", my_name,
    "'s absolute residuals are smaller than ", mx_name,
           "(p-value=", trWg$p.value, ")\n")
    }
    return(">")
  }
   L. Lavazza @ ICSEA 2018
                                 - 84 -
                                            Exploration and Analysis of Software Engineering Data with R
```


De	aling with outliers
• We want to ch model.	neck if there is any data point that affects excessively the
 This can be d distance. Code 	one in several ways, including by computing Cook's
cd <- cooks	.distance(lm.r); m Cook distance =", max(cd), "\n")
 Result maximum Cod 	ok distance = 0.1670832
	This is a small enough value. If not, we could remove the responsible data point from the dataset and derive a new model.
L. Lavazza @ ICSEA 2018	- 90 - Exploration and Analysis of Software Engineering Data with F

ed program consisting on several classes. very class you know: set of OO measures hether the class is faulty (i.e., it contains one or more faults) or
bether the class is faulty (i.e., it contains one or more faults) or
t.
tive: we want a model that –given a set of measures concerning s– yields the probability that the class is faulty, i.e., its fault- eness.
s- yields the probability that the class is faulty, i.e., its fault

	wmc	noc [‡]	cbo	rfc 🗧	lcom [‡]	ca $^{\circ}$	ce $^{\circ}$	npm [‡]	lcom3	loc 🌣	dam [‡]	moa [‡]	mfa 🗘	cam $\hat{~}$	ic $\hat{\mathbf{c}}$	cbm [‡]	amc 🌼	max_cc	avg_cc	fault
1	7	0	2	14	3	1	1	7	0.58333333	89	1.00000000	0	0.7272727	0.5714286	1	1	11.428571	2	1.2857	
2	8	0	2	17	2	1	1	8	0.57142857	162	1.00000000	0	0.6956522	0.5833333	1	1	19.000000	8	2.3750	
3	38	0	14	38	703	8	9	38	2.00000000	38	0.00000000	0	0.0000000	0.2421053	0	0	0.000000	1	1.0000	
4	10	0	9	57	0	4	5	9	0.11111111	510	1.00000000	0	0.0000000	0.4250000	0	0	49.900000	3	1.1000	
5	28	0	19	83	172	12	9	24	0.78240741	800	1.00000000	0	0.0000000	0.1785714	1	1	27.285714	23	2.5357	
6	36	0	11	45	214	11	0	34	0.74725275	774	0.92307692	0	0.0000000	0.3314286	1	1	20.138889	52	2.9444	
7	7	0	5	13	21	5	0	7	2.00000000	88	0.00000000	0	0.0000000	0.4285714	0	0	11.571429	4	2.0000	
8	2	0	4	8	1	2	3	1	1.50000000	37	1.00000000	0	1.0000000	1.0000000	0	0	16.500000	0	0.0000	
9	11	0	9	80	41	5	8	1	0.81304348	829	1.0000000	1	0.9790356	0.3818182	0	0	72.272727	7	2.0000	
10	19	0	13	89	113	9	11	1	0.7444444	839	0.6000000	4	0.9664430	0.1754386	0	0	42.105263	7	1.4211	
11	6	0	10	34	11	6	9	2	0.98888889	261	0.11111111	1	0.9908257	0.5000000	0	0	39.500000	1	0.6667	
12	10	0	6	49	0	1	5	9	0.11111111	473	1.00000000	0	0.0000000	0.4250000	0	0	46.200000	3	1.1000	
13	8	0	3	18	2	2	1	8	0.66666667	246	0.66666667	0	0.6956522	0.5833333	1	1	29.375000	7	2.0000	
14	84	0	44	313	3022	34	44	5	0.88012048	5924	0.95000000	5	0.8490909	0.2010582	0	0	68.571429	49	2.5119	
15	8	0	3	17	2	2	1	8	0.57142857	205	1.00000000	0	0.6956522	0.5833333	1	1	24.375000	7	2.0000	
16	24	0	12	51	130	9	4	23	0.77173913	584	0.87500000	0	0.0000000	0.2422360	1	1	23.000000	28	2.4167	
17	6	0	9	22	11	1	8	5	0.80000000	90	1.00000000	0	0.0000000	0.6666667	0	0	13.666667	1	0.6667	
18	4	0	2	8	6	2	0	4	1.33333333	21	1.00000000	0	1.0000000	0.6666667	0	0	4.000000	0	0.0000	
19	3	0	6	20	3	1	5	2	1.40000000	100	1.00000000	0	0.6666667	0.6666667	0	0	30.666667	1	0.3333	
20	4	0	4	4	6	2	2	4	2.00000000	4	0.00000000	0	0.0000000	1.0000000	0	0	0.000000	1	1.0000	
21	3	0	2	6	3	0	2	1	1.50000000	17	1.00000000	0	0.0000000	0.6666667	0	0	4.000000	1	0.6667	

The Trade	
 A few tests have been prop 	posed to test the validity of BLR models:
Residuals of the BLR n Absolute Residuals of the if the former are smalled one independent varial In R terms, you comp By the way, the same	a Signed Rank Test, to compare the Absolute nodel with one independent variable with the the BLR model with no independent variable er, than it is worth building a BLR model with ble pare abs(y-lm.g\$fitted) with abs(y-AP/n) e procedure is applied to check if model that uses r than a model that uses just one variable.
 Hosmer-Lemeshow Go 	oodness of Fit (GOF) Test
Wald Test for Model Ce	oefficients
►	
	All these tests are supported by some R package. We do not go into details.

A "de	fault" thres	shold
 Considering that quite "natural" so 		erage probability that a class is faulty, lowing:
if (fp(<u>x</u>) < A	₽/n)	
then fault	iness=0	
else fault	iness=1	
• Other thresholds	can be set, us	ing different criteria:
Risk-averse tl		0
 lower than 	AP/n	
Thresholds based	ased on busine	ess considerations
		ability of the product, its cost and the lecide that fault-proneness=0.4 is sufficient
		Exploration and Analysis of Software Engineering Data w

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Positive- focusedRecall $\frac{TP}{AP}$ $\frac{1}{Precision + \frac{1}{Recall}}$ estimated positive is actually positive extent to which actual positives are correctly estimated positive overall estimation evaluation for positives
Positive- focusedRecall $\frac{TP}{AP}$ correctly estimated positive e $\frac{1}{Precision} + \frac{1}{Recall}$ extent to which actual positives are correctly estimated positive overall estimation evaluation for positives
F-measure $\frac{2}{\frac{1}{Precision} + \frac{1}{Recall}}$ overall estimation evaluation for positives
NPV $\frac{TN}{EN}$ extent to which we can believe that an
Negative-Specificity $\frac{TN}{AN}$ estimated negative is actually negativeextent to which actual negatives are
focused NM $\frac{2}{\frac{1}{NPV} + \frac{1}{Specificity}}$ correctly estimated negative overall evaluation of estimation for negat
J $\frac{TP}{AP} - \frac{FP}{AN}$ overall evaluation of estimation for
Overall $T = T = T = T = T = T = T = T = T = T =$
$\phi \qquad \frac{TP \cdot TN - FP \cdot FN}{\sqrt{EN \cdot EP \cdot AN \cdot AP}} \qquad \begin{array}{c} \text{actual positives} \\ \text{overall evaluation of estimation for} \\ \text{positives and negatives} \end{array}$

J48 pruned tr	ee			. 1.0	© @ © ©		- 00 - 0) 0
				0.8				
wmc <= 19: ne	gative (3	1.0/5.0)	less	0.6				
wmc > 19: pos		.0/1.0)	faultiness	0.4				
Number of Lea		2						
Size of the t	ree :	3		0.2				
n	egative po	ositive			800 0	0	1	
negative	26	1		0	20	40	60	80
positive	5	11				WMC		

