
Markus Kelanti, University of Oulu, Finland
Luigi Lavazza, Università degli Studi dell'Insubria, Italy

Martin Zinner, Center of Information Services and High Performance Computing , University of Dresden, Germany

Roy Oberhauser, Aalen University, Germany

SoftNet 2018 Panel on Software and Systems

Roy Oberhauser
Aalen University

Germany

SoftNet 2018 Panel on Software and Systems

§ DevOps
§ Post-Scrum
§ Serverless
§ Software-Defined Architecture
§ Platform-as-a-Service
§ Low-Code
§ Augmented Software Development

© 2018 Roy Oberhauser

Information visualisation in software
development

Markus Kelanti

Empirical Software Engineering in Software, Systems and Services (M3S)

Faculty of Information Technology and Electrical Engineering

University of Oulu

Markus Kelanti

Place your picture here

Optional: My personal

soft skills are…

Bio

Research

2015 Received M.Sc. in University of Oulu in the field of software
engineering.

2017 Received Ph.D. after defending his thesis over stakeholder
analysis in large-scale software-intensive systems.

Currently a postdoctoral researcher in the Faculty of Information
Technology and Electrical Engineering at the University of Oulu.

Today’s activities include project research in IoT analytics and web
application development and teaching software engineering courses.

Past activities: Stakeholder analysis, very-large scale software-intensive systems

development, RE tool integration, agile software development and software processes.

Current activities: IoT systems analytics and development, software metrics and analytics,

software service development and information visualisation in software production.

Information visualisation

• Generally a presentation of information (often in
incomprehensible format) in a visual format to aid
human understanding

• A hot topic in software development:
• Allows a quick understanding of a situation (feature

completion)
• Provides summaries from complex data sets (metrics)
• Directs decision-making (feature use forecasts)
• Etc…

• Potential in visualisation has sparked new research
initiatives and start-ups to cater the need for new and
novel visualisation approaches

Code as city with a chosen metric [1]

[1] https://wettel.github.io/codecity.html

Code structure visualisation [2]

[2] https://softagram.com/softagram-cloud

Sprint burn down chart [3]

[3] https://screenful.com

Plenty of solutions and opportunities

But that is not the point of this talk

Challenges in information
visualisation in software development

In the field, where visualisations are needed and used

New (and old) complex information

• Certain visualisation
techniques and models are
well-established for known
needs:

• UML class structure diagrams
• Code coverage graphs
• Etc…

• But when asking the needs of
the companies they express
visualisation needs in
decision-making that require
inclusion of human activity

• The special favorite in this
category is the “when-
something-is-done” (for
example when feature is done)

Hours used for task

1st Qtr 2nd Qtr

Easy to understand

• “Intuitive” seems to be the keyword when
discussing with companies
• Often they want simplicity as there is limited amount of

time available for the team

• This can be also a problem of perceived value of the
visualisation itself

• Information overflow
• Cannot feed too much information as it takes then too

much time and resources to understand what the
visualisation wants to tell

Test automation
ratio – automated
tests VS manual

tests

Obtain Test Automation
Ratio

Team Test
Automation Ratio

Test Case
Excel

Calculate Test
Automation Ratio

based on Excel data
sheet

Obtain Test
Automation Ratio

from Email message
from colleque

Email
message

Obtain Test automation
ratio from colleque

Team Test
Automation Ratio

Obtain Test Automation
Ratio from Excel

Avarage test automation
ratio in Excel

Test automation
ratio – automated
tests VS manual

tests

Responsible person provides
the Test Automation Ration

every month

Test Report
in Database

Test
Automation
Ratio - figure

Obtain Test Automation
Ratio

Test data
from team A

Responsible person
calculates Test Automation

Ratio from teams

Team Test
Automation Ratio

Avarage of all products Test
Automation Ratios in Excel

Number of
automated
test cases

Overall
number of
test cases

Collect information from
teams where products

are developed

Teams calculate the test automation ratio
for the product they develop

List of products and
their test automation

ratios in excel

Product test
automation

ratio

Test Case
Excel

Calculate Test
Automation Ratio

based on Excel data
sheet

Obtain Test
Automation Ratio

from Email message
from colleque

Email
message

Test
Data

Obtain Test automation
ratio from colleque

Responsible person creates
an excel file based on the

test data

Write an email with Test
Automation Ratio figure

Calculate Test
Automation Ratio based

on Test report

Team Test
Automation Ratio

Provide test cases
used by team A

Provide test cases
used by team B

Provide test cases
used by team C

Test data
from team A

Test data
from team A

Obtain Test Automation
Ratio from Excel

Avarage test automation
ratio in Excel

But still comprehensible

• The problem of the simple visualisation, it hides too
much information and increases the change of
wrong conclusions

• The need has been for a visualisation that can
explain itself, usually with different abstraction
levels (and viewpoints)

Validity of visualisation

• It is often assumed that information and its formulation is valid,
users often perceive the visualisation which is the end result

• However, the validity of visualisation is tied to the data it
visualises and how it has been formulated before it is seen by
user

Metric

(1+2+3+4)/4

Variable 1 Variable 3

Stakeholder 4
obtains

Variable 3

Stakeholder 3
provides

Variable 2

Variable 4

Stakeholder 2
calculates
Variable 2

Stakeholder 1
calculates
Variable 2’

Variable 2

Unknown

Stakeholders require visualisation
from their viewpoint
• When one makes a decision, a specific set of information is

needed in a specific format allowing one to make a decision

• The information is often “standardised“ in different domains
• For example agile sprint burn chart

• However, in practice the set of information and format vary
depending on practices, experience, organisation and other
factors
• Often individual stakeholders need to have a visualisation on the

same data as others but in different way to support their work

• Ignoring this need causes stakeholders to find an other way
to find the information they need
• It can lead to situations where the visualisation tool is modified,

abandoned or simply replaced with something else

Implementation of a visualisation tool

• Companies often use a set of visualisation tools bought
for their teams
• Selection criteria varies, recently tools have been selected

more based on developer needs

• On the other hand, some tools are selected and used
based on personal preference of the user

• The use of these tools depend on availability on
resources
• The problem is especially visible with “1-person teams”

where the project is small and resources should be invested
on actual code development

• There is a need for visualisation tools and methods that can
be implemented and run as automatically as possible (cf.
Docker)

Cost of visualisation

• Visualisation costs are easily absorbed in large
companies
• Allows smaller teams to utilise powerful tools in development

• The bar rises to apply visualisations as the companies
get smaller, unless:
• Obtained value overcomes the cost of visualisation

• Implementation and maintenance requires minimal effort

• Essentially we can visualise almost anything but the
companies want to adapt those that are effective in
cost and resource -vise

Comments?

Università degli Studi dell’Insubria
Dipartimento di Scienze Teoriche e Applicate

Trends in software development and verification

Management of code smells and technical debt

in the software development process

Luigi Lavazza

Dipartimento di Scienze Teoriche e Applicate

luigi.lavazza@uninsubria.it

Situation

There is an increasing attention to the quality of code.

In the past, quality was mainly checked during testing.

Now quality is increasingly evaluated and improved during
development

Probable reasons

because of the increased familiarity with concepts like refactoring and Test-

Driven Development, made popular by agile processes

Good marketing: the term technical debt suggests that you lose money

with bad quality and managers are quite sensible to money-related

arguments.

Trends in software development and verificationICSEA 2018 - 2 -

Caring for quality is OK, but ...

In general, the results you get depend on how you manage technical
debt.

Key issues:

a) identification and quantification of debt

b) management of debt

Trends in software development and verificationICSEA 2018 - 3 -

Identification and quantification of debt

Problems observed

Ill-defined measures

Measures of dubious utility

Code smell misinterpretation and misuse

Trends in software development and verificationICSEA 2018 - 4 -

Ill defined measures

Example: “cognitive complexity”, an alternative to McCabe’s
Cyclomatic Complexity

Problems:

Defined via a few examples. No rigorous definition based on syntactic and

semantic properties of programs.

No experimental evidence given that cognitive complexity

is not correlated with McCabe’s complexity (or any other code

measure)

provides the sought advantages with respect to McCabe’s complexity

Trends in software development and verificationICSEA 2018 - 5 -

Measures of dubious utility

SonarQube provides over 200 types of measurement-based
“violations”.

The so-called squids

There is no evidence that these violations are actually dangerous

Similarly, code smells (proposed by Beck and Fowler) are widely used,
but empirical research on their actual effects on code quality provides
no conclusive indications

Some researchers even found that some smell in some cases appear to

increase software quality

Trends in software development and verificationICSEA 2018 - 6 -

Code smell misinterpretation and misuse

Code smells were introduced to let programmers recognize code that
needs refactoring

Originally, they were meant to be used in “manual” code inspections

So that programmers could recognize the occurrence of the “anti-pattern”

and the existence of some danger at the same time

Now they are often identified automatically using static code analysis

Problem: models and thresholds used to decide that a piece of code
smells are not based on meaningful relations with external qualities

GodClass(c) iff ((WMC(c)≥47) and (TCC(c)<1/3) and (ATFD(c)>5)

WMC = Weighted Methods per Class

TCC = Tight Class Cohesion

ATFD = Access To Foreign Data

As a result, many false positives are obtained

Trends in software development and verificationICSEA 2018 - 7 -

A conceptual error

Let’s take definition of God Class

GodClass(c) iff ((WMC(c)≥47) and (TCC(c)<1/3) and (ATFD(c)>5)

In this way, we are just transforming measures of internal code
properties (WMC, TCC, ATFD) into yet another internal property of
code.

Suppose that God Classes are actually dangerous for maintainability

��������
�		
��

���������������

If being a god class actually depends on WMC, TCC and ATFD, it is

����, ���, �����
�
	��

��������

Well, we do not need the “God Class” concept at all:

����, ���, �����
�		
��

���������������

Trends in software development and verificationICSEA 2018 - 8 -

Management of debt

Problems

No methodologies

No measure of the actual effectiveness

Several organizations impose that

Smells and “violations” be detected using some (usually commercial) tool

Some types of smells and violations be removed asap, so as to keep the

code “clean” with respect to the supposedly dangerous smells

However, these organizations often do not have any evidence that
these directives are actually effective

It is possible that they are dedicating time and effort to deal with "issues" of

no consequence

It is possible that the process of dealing with these issue is not as efficient

as it could be

Trends in software development and verificationICSEA 2018 - 9 -

Suggestions

Measure rigorously

internal qualities (e.g., code size, complexity, cohesion, coupling, etc.)

external qualities (faultiness, maintainability, etc.)

Build models that relate external qualities to internal qualities

Using your own data (i.e., do not trust what happens elsewhere)

Using rigorous statistical analysis

Define thresholds for internal qualities based on the minimum
acceptable value of external quality measures

Recommend developers to keep internal quality compliant with the
thresholds

Refactor code when internal measure thresholds are violated

Trends in software development and verificationICSEA 2018 - 10 -

Thresholds accounting for fault-proneness

Trends in software development and verificationICSEA 2018 - 11 -

Threshold

on WMC

Maximum acceptable probability

that the class is faulty

(based on business-relevant

considerations!)

Panel Presentation: Outlier Detection
ICSEA 2018, Nice France
October 17, 2018

Martin Zinner (martin.zinner1@tu-dresden.de))

Martin ZinnerPanel Presentation: Outlier DetectionThe Thirteenth International Conference on Software Engineering AdvancesICSEA 2018 Oct, 17 2018 – Nice, France
Slide 2

Definition of Outliers

An exact definition of an outlier depends on assumptions regarding the data structure and the applied detection method:— Hawkins: An observation that deviates so much from other observations as to arouse suspicion that it was generated by a different mechanism.— Barnet and Lewis: Outlier is one that appears to deviate markedly from other members of the sample in which it occurs.

Outliers can be of two kinds:— Data entry errors (and similar).— Legitimate data that is unusal.
Bibliography:Hans-Peter Kriegel et al.: “Outlier Detection Techniques” (2009),https://www.siam.org/meetings/sdm10/tutorial3.pdf

Martin ZinnerPanel Presentation: Outlier DetectionThe Thirteenth International Conference on Software Engineering AdvancesICSEA 2018 Oct, 17 2018 – Nice, France
Slide 3

Extreme Value Analysis - 1

Method for Multivariate Outlier Detection:— Often indicate those observations thatare located relatively far from the center. — Several distances can be implemented.
Question:What is the difference between the redpoint and the green one?
Intuition:The red point is less likely to belong tothe cluster than the green one.
Bibliography:Chris McCormick: “Mahalanobis Distance“ (2014),http://mccormickml.com/2014/07/22/mahalanobis-distance/

Martin ZinnerPanel Presentation: Outlier DetectionThe Thirteenth International Conference on Software Engineering AdvancesICSEA 2018 Oct, 17 2018 – Nice, France
Slide 4

Extreme Value Analysis - 2

Normalization of the Data:— The principal directions of variation arealigned with the axes. — Normalize to have unit variance (bydividing the components by the StandardDeviation).— Turns the data cluster into a sphere.
Result:The green point is closer to the mean (red circle) than the red point.
Bibliography:Chris McCormick: “Mahalanobis Distance“ (2014),http://mccormickml.com/2014/07/22/mahalanobis-distance/

Martin ZinnerPanel Presentation: Outlier DetectionThe Thirteenth International Conference on Software Engineering AdvancesICSEA 2018 Oct, 17 2018 – Nice, France
Slide 5

K-Means Cluster Analysis

K-means Clustering:— Aims to partition n observations into kcluster.— Each observation belongs to the clusterwith the nearest mean.— Has a inherent element of randomness.

Outliers:Big distance to their cluster center.

Bibliography:Varun Chandola: “Anomaly Detection: A Survey“ (2009),http://cucis.ece.northwestern.edu/projects/DMS/publications/AnomalyDetection.pdf

Martin ZinnerPanel Presentation: Outlier DetectionThe Thirteenth International Conference on Software Engineering AdvancesICSEA 2018 Oct, 17 2018 – Nice, France
Slide 6

Density Based Outlier Detection

Clusters: both C1 and C2.

Outliers: both o1 and o2.

Distance or clustering based methods can detect o1 but cannot detect o2 as outlier.

Bibliography:Jian Pei: “CMPT 741/459 Data Mining – Outlier Detection“ (Lecture notes 2015),http://www.cs.sfu.ca/CourseCentral/741/jpei/slides/Outlier%20Detection%202.pdf

Martin ZinnerPanel Presentation: Outlier DetectionThe Thirteenth International Conference on Software Engineering AdvancesICSEA 2018 Oct, 17 2018 – Nice, France
Slide 7

Tools for Outlier Detection

An excerpt:
— RapidMiner: Formerly YALE, is a data science software platform.
— Weka: Waikato Environment for Knowledge Analysis - Data Mining Tool.
— Knime: Konstanz Information Miner – Data Mining and Machine Learning Tool.
— Spark: Unified analytics engine for big data processing, with built-in modules for machine learning, etc.
— R: Programming language for statistical computing.
— Python: Programming language with libraries for Data Science, Machine Learning, Data Mining, etc.

Martin ZinnerPanel Presentation: Outlier DetectionThe Thirteenth International Conference on Software Engineering AdvancesICSEA 2018 Oct, 17 2018 – Nice, France
Slide 8

Applicability of Outlier Detection

Used in a variety of domains:— Intrusion detection, — Fraud detection,— Fault detection, — System health monitoring, — Event detection in sensor networks,— Ecosystem disturbances, — Preprocessing to remove anomalous data from the dataset.
Removing the anomalous data from the dataset often results in a statistically significant increase in accuracy.

Bibliography:https://en.wikipedia.org/wiki/Anomaly_detection

Martin ZinnerPanel Presentation: Outlier DetectionThe Thirteenth International Conference on Software Engineering AdvancesICSEA 2018 Oct, 17 2018 – Nice, France
Slide 9

Thank you

Thank you for your attention

Questions ?

