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Introduction & Motivation

Humanoid robots are among the most complex machines on earth. 

Introduction & Motivation

And you will learn here how to build, teach and program them.

https://www.ald.softbankrobotics.com/en/robots/nao
https://www.robotlab.com/store/darwin-op2-robot
http://www.youtube.com/watch?v=tFrjrgBV8K0&t=16
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Challenges in Motor Skill Learning Challenges in motor skill learning

https://docs.google.com/file/d/1pJocIJvDuJBmy2EOup76BX9akEKbhPDN/preview
https://docs.google.com/file/d/1q57n1tg9VURbdaZwCV_Gj_CezyeWclL1/preview
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Introduction & Motivation

The challenges in understanding humans and in building intelligent humanoids are 
converging!

More than robotics ...

~ 700 muscles
~ 100 joints
~ 100 x 106 photo receptors 

~ 102 FA-I receptors per 
fingertip

- 53 degrees of freedom 
- 4 force/torque sensors
- 1.8 x 106 photo 
receptors
~ 2000 tactile sensors
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Challenges in Skill Learning

In humans we suffer from noise, accuracy, delays. 

Despite robot vision is richer and more precise, robot 
motion is faster and more accurate their motor skills 

are inferior, why?
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Why probabilistic methods?

● Uncertainties in the sensor measurements.
● Delays and transmission errors.
● Unmodeled dynamics (friction dynamics, coriolis forces, etc.).
● Partial observability.
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Why neural methods?

● The optimal methods structure / features are often uknown.
● Millions of data samples can be processed in O(n).
● Complex multimodal probability distributions can be represented (in contrast to 

commonly used unimodal Gassians).
● Predictions can be computed in realtime in O(1). 



https://docs.google.com/file/d/1Fa2TK6-vohWzHcZETAtodWb9DzDTwoZC/preview


https://docs.google.com/file/d/1T-hRDGsxwFmIqCUaXtL4L8tVkM6br5SM/preview


https://docs.google.com/file/d/1q57n1tg9VURbdaZwCV_Gj_CezyeWclL1/preview


https://docs.google.com/file/d/1TuSpEyn-az89x1Jlg1Ty1Pc1WZGD_KMT/preview
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Research questions

1. How can humans learn new motor skills within a few trials?
a. “control only when necessary” - motor variability
b. exploiting kinematic and task redundancy 
c. transfer of related skills

2. How do humans solve cognitive reasoning tasks in huge spaces?
a. planning in stochastic environments
b. inferring multiple solutions in milliseconds
c. online model adaptation from intrinsic motivation signals.
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Interested in a brief robotics history?
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1920 Karek Capek: “robot” in his play “R.U.R.” (Rossum’s Universal Robots).

A brief historical review Link to a more detailed 
history review

1941 Isaac Asimov: Three laws of “robotics”:

1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.
2. A robot must obey orders given it by human beings except where such orders would conflict with the 

First Law.
3. A robot must protect its own existence as long as such protection does not conflict with the First or 

Second Law.

http://www.robotshop.com/media/files/PDF/timeline.pdf
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A brief historical review
1968 “Shakey” of the “Stanford Research 
Institute” defines a landmark in robotics:

- basic planning and navigation skills.
- object detection and manipulation 

capabilities.

http://www.youtube.com/watch?v=qXdn6ynwpiI&t=297
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A brief historical review
1973 Ichiro Kato develops the first “full-scale” 
antrophomorphic humanoid, WABOT I.

http://www.youtube.com/watch?v=dX2cxm1AoBI&t=20
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the history of Hunda’s humanoids

A brief historical review
1996 Honda presents its P2 

they started with E0 in 1986

http://world.honda.com/ASIMO/history/
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A brief historical review
2004 The Italian Institute of Technologie
         presents the ICub (intelligent man-cub).

http://www.youtube.com/watch?v=AUvUs8gmeQo&t=5
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A brief historical review
2017 Boston dynamics’ Atlas impresses the 
robotics community.

http://www.youtube.com/watch?v=w1d3P8tW3Ls&t=21
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II. Representations of Skills 
& Imitation Learning

I. Kinematics, Dynamics & 
Model Learning 

III. Feedback, Priorities & 
Torque Control 

IV. Reinforcement Learning 
& Policy Search

V. Cognitive Reasoning & 
Planning 

VI. Sensor Integration & 
Fusion
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Where do we need representations of skills?
II.1 Movement primitives.

Fan Zeng, Beshah Ayalew and Mohammed Omar: Roboticc automotive paint curing using thermal signature feedback, 2009

http://www.emeraldinsight.com/doi/abs/10.1108/01439910910957165
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The complexity of 
skill representations

II.1 Movement primitives.

Rueckert, Elmar; Camernik, Jernej; Peters, Jan; Babic, Jan. Probabilistic Movement Models Show that Postural Control Precedes and 
Predicts Volitional Motor Control. Nature Publishing Group: Scientific Reports, 6 (28455), 2016.

https://ai-lab.science/wp/SciReps_HumanContacts.pdf
https://ai-lab.science/wp/SciReps_HumanContacts.pdf
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The complexity of 
skill representations

II.1 Movement primitives.

Rueckert, Elmar; Camernik, Jernej; Peters, Jan; Babic, Jan. Probabilistic Movement Models Show that Postural Control Precedes and 
Predicts Volitional Motor Control. Nature Publishing Group: Scientific Reports, 6 (28455), 2016.

Data:

● 17 markers with x,y,z at 100Hz

● 2 force plates at 100Hz (CoM at x,y)

● 9600 trials of 20 subjects of 

● On avg. 100 samples per trial

(17∙3+2∙2)∙9600∙100 > 50 Mio. data pts 

Just for a single movement skill!

https://ai-lab.science/wp/SciReps_HumanContacts.pdf
https://ai-lab.science/wp/SciReps_HumanContacts.pdf
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Naive vector/matrix representation
scales in O(d x T x K), where d … number of joints, force plates or markers, 
 T … number of time steps per trial k = 1...K

II.1 Movement primitives.

50 Mio. data pts 
stored with 64 bits per 
double > 3 GByte
for movements of 1 
second!

Even when we average over all 9600 trials 
we would need to store 5500 data points 
per second!
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Naive via-point representation
scales in O(d x N x K), where d … number of joints, force plates or markers, 
n … number of via-points comp. from the avg. over K trials

II.1 Movement primitives.

-3 via-pts per marker 

-Averaging the via-pts 

over the 9600 trials 

(17∙3+2∙2)∙3 = 165 

parameters to learn 

for a 55-dimensonal 

movement representation

in ~10KB memory

Leads to non-smooth trajectories!
t1

t2

t3

Can we do better? 
Yes by using the dynamics model for  
planning a route through via-points!
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II.1 Movement primitives.

Spline representation
Splines are piecewise polynomials (don’t use solely polynomials)

Yisheng Guan, Kazuhito Yokoi, Olivier Stasse, Abderrahmane Kheddar. On Robotic Trajectory 
Planning Using Polynomial Interpolations. In Proceedings of the International Conference on 
Robotics and Biomimetics, 2005.

More slides on splines by 
Jernej Barbic, USC

https://pdfs.semanticscholar.org/1f92/42ca34595b5de11cbcd0edd39fc617b8cbd4.pdf
https://pdfs.semanticscholar.org/1f92/42ca34595b5de11cbcd0edd39fc617b8cbd4.pdf
https://ai-lab.science/wp/Frontiers2013aRueckert.pdf
http://run.usc.edu/cs480-s13/lec08-splines/08-splines.pdf
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II.1 Movement primitives.

Spline representation
Scale in O(d x n x k), where d … number of joints, 
force plates or markers, n … number of knots at times t1, t2, …, tn of order k

Yisheng Guan, Kazuhito Yokoi, Olivier Stasse, Abderrahmane Kheddar. On Robotic Trajectory Planning Using 
Polynomial Interpolations. In Proceedings of the International Conference on Robotics and Biomimetics, 2005.

-3 via-pts per marker 

-Averaging the via-pts 

over the 9600 trials

-k=3 for cubic-splines (ci0, 

ci1, ci2, ci3)

(17∙3+2∙2)∙3∙4 = 660 

parameters to learn!

https://pdfs.semanticscholar.org/1f92/42ca34595b5de11cbcd0edd39fc617b8cbd4.pdf
https://pdfs.semanticscholar.org/1f92/42ca34595b5de11cbcd0edd39fc617b8cbd4.pdf
https://ai-lab.science/wp/Frontiers2013aRueckert.pdf
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Desired features of skill representations

● Compact (few parameters to learn).
● Smooth (need to compute derivatives for velocities and 

controls).
● Flexible generalizables to different tasks (goal locations, 

orientations, etc.).
● Can be learnt from the data through imitation learning (IM).
● Self-improvement through reinforcement learning (RL).  
● Composable through sequencing and co-activation.
● Stochastic, can model the variance of the data.
● Coupled, can model the coupling of joints.

II.1 Movement primitives.

Ex. flexibility to start 
at different poses.
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III. Kalman and Particle 
Filter for Inference

II. Gaussian Processes for 
Dynamics Model Learning 

V. Spiking Neural Networks 
for Motion Planning

I. Bayesian Inference 

IV. Bayesian Optimization for 
Reinforcement Learning 

VI. Probabilistic Movement 
Primitives

Probabilistic Methods for Robotics
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P(A) P(B)

P(A|B) Learning problem:

P(A|B) = P(A, B)/P(B)

given data samples from P(A, B)
assuming priors P(A), P(B)

My approach: learning probabilistic models
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learned prior
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[5] Conditioning, given the prior                        

Result:                         
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Movement model learning example

Rueckert, Elmar; Lioutikov, Rudolf; Calandra, Roberto; Schmidt, Marius; 
Beckerle, Philipp; Peters, Jan. Low-cost Sensor Glove with Force Feedback for 
Learning from Demonstrations using Probabilistic Trajectory Representations. 
ICRA 2015 Workshop on Tactile and force sensing for autonomous compliant 
intelligent robots, 2015.

https://docs.google.com/file/d/1TuSpEyn-az89x1Jlg1Ty1Pc1WZGD_KMT/preview
https://ai-lab.science/wp/ICRA2015Rueckertb.pdf
https://ai-lab.science/wp/ICRA2015Rueckertb.pdf
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II.2 DMPs

How do we train the model from data?
 

● Kinesthetic teaching (see the picture).

● Teleoperation (e.g., by using a joystick).

● Visual observation (using cameras or optical markers).

● Sensor suits (IMUs, e.g., Xsense.com).

The last two approaches require to map the data onto 
the robot which is often problematic!

https://www.xsens.com/products/xsens-mvn-analyze/
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Imitation learning

Given: 

Or in vector notation per dim. d: 

Let’s consider only one dimension:
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Radial basis functions as features
Modeling complex shapes through Gaussians 

Note N=8 Gaussian basis 
functions are used here
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Radial basis functions as features
Modeling complex shapes through Gaussians 

II.2 DMPs

fixed basis functions scaled by learnable 
parameters

normalization
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Imitation learning

 

II. Compute the model’s function 
term: 

from

where

I. Compute the target function from the data:
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Imitation learning

 II. Compute the model’s function 
term: 

from

I. Compute the target function from the data:

III. Minimizing the objective: 

Results in:
Link to a nice related  

tutorial

https://studywolf.wordpress.com/2013/11/16/dynamic-movement-primitives-part-1-the-basics/


Humanoid Robotics | Prof. Dr. Elmar Rueckert

How many basis functions are optimal?
II.2 DMPs

-6 Gaussians per dim. 

- (17∙3+2∙2)∙10 = 550 

parameters to learn 

for a 55-dimensonal 

movement representation

Depends on the task and has to be numerically evaluated!
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Imitation learning through optical markers
II.3 Example of probabilistic movement primitives.

Rueckert, Elmar; Camernik, Jernej; Peters, Jan; Babic, Jan. Probabilistic Movement Models Show 
that Postural Control Precedes and Predicts Volitional Motor Control. Nature Publishing Group: 
Scientific Reports, 6 (28455), 2016.

https://ai-lab.science/wp/SciReps_HumanContacts.pdf
https://ai-lab.science/wp/SciReps_HumanContacts.pdf
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Imitation learning through optical markers
II.3 Example of probabilistic movement primitives.

Rueckert, Elmar; Camernik, Jernej; Peters, Jan; Babic, Jan. Probabilistic Movement Models Show 
that Postural Control Precedes and Predicts Volitional Motor Control. Nature Publishing Group: 
Scientific Reports, 6 (28455), 2016.

https://ai-lab.science/wp/SciReps_HumanContacts.pdf
https://ai-lab.science/wp/SciReps_HumanContacts.pdf
https://docs.google.com/file/d/13TArGBZK0x21lrSXH_jZgGrQXSz2xP12/preview
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Is one movement primitive enough?

No!

● Complex tasks require a large number of primitives.
● Reusable primitives can be sequenced or co-activated (in time).
● Non-homogeneous spaces require separate primitives (in space).
● Tradeoff between the number of primitives and their complexity  

(num. of Gaussians)!

II.2 DMPs
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Imitation learning of a library of primitives
II.2 DMPs

Muelling, K.; Kober, J.; Kroemer, O.; Peters, J. (2013). Learning 
to Select and Generalize Striking Movements in Robot Table 
Tennis, International Journal of Robotics Research (IJRR), 32, 3, 
pp.263-279.

http://www.youtube.com/watch?v=MCqtKgwQlaQ
http://www.ias.informatik.tu-darmstadt.de/uploads/Publications/Muelling_IJRR_2013.pdf
http://www.ias.informatik.tu-darmstadt.de/uploads/Publications/Muelling_IJRR_2013.pdf
http://www.ias.informatik.tu-darmstadt.de/uploads/Publications/Muelling_IJRR_2013.pdf
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Incremental Imitation learning a primitive library 
II.3 Example of probabilistic movement primitives.

New demos

?
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Stark, Svenja; Peters, Jan; Rueckert, 
Elmar.
A Comparison of Distance Measures for 
Learning Nonparametric Motor Skill 
Libraries. Proceedings of the 
International Conference on Humanoid 
Robots (HUMANOIDS), 2017.

https://ai-lab.science/wp/Humanoids2017Stark.pdf
https://ai-lab.science/wp/Humanoids2017Stark.pdf
https://ai-lab.science/wp/Humanoids2017Stark.pdf
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When a single primitive is not sufficient
II.3 Example of probabilistic movement primitives.

Rueckert, Elmar; Mundo, Jan; 
Paraschos, Alexandros; 
Peters, Jan; Neumann, 
Gerhard. Extracting 
Low-Dimensional Control 
Variables for Movement 
Primitives. Proceedings of 
the International Conference 
on Robotics and Automation 
(ICRA), 2015.

https://docs.google.com/file/d/1GYcDiEBx-QKGgDVC8NWGoiB1VKmKfrPf/preview
https://ai-lab.science/wp/ICRA2015Rueckert.pdf
https://ai-lab.science/wp/ICRA2015Rueckert.pdf
https://ai-lab.science/wp/ICRA2015Rueckert.pdf
https://ai-lab.science/wp/ICRA2015Rueckert.pdf
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Can we generalize? 

Using probabilistic trajectory models which are discussed in Part Two!

II.3 Example of probabilistic movement primitives.

Paraschos, Alexandros; Daniel, Christian; Peters, Jan; Neumann, Gerhard. Probabilistic Movement Primitives, Advances in Neural Information Processing Systems (NIPS), MIT Press, 2013.

http://www.ias.tu-darmstadt.de/uploads/Publications/Paraschos_NIPS_2013a.pdf
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II.3 Example of probabilistic movement primitives.

Paraschos, Alexandros; Daniel, Christian; Peters, Jan; Neumann, Gerhard. Probabilistic Movement Primitives, Advances in Neural Information Processing Systems (NIPS), MIT Press, 2013.

http://www.ias.tu-darmstadt.de/uploads/Publications/Paraschos_NIPS_2013a.pdf
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Koert, D.; Maeda, G.; Lioutikov, R.; Neumann, G. 
& Peters, J.
Demonstration Based Trajectory Optimization 
for Generalizable Robot Motions.
Proceedings of the International Conference on 
Humanoid Robots (HUMANOIDS), 2016

http://www.youtube.com/watch?v=O7i1qttva2I
https://www.youtube.com/redirect?redir_token=hlQ_K6d6mHnFkZjui94DMLxZjVN8MTUzOTY3NDUzOEAxNTM5NTg4MTM4&q=http%3A%2F%2Fwww.ausy.tu-darmstadt.de%2Fuploads%2FSite%2FEditPublication%2FkoertHumanoids2016&event=video_description&v=O7i1qttva2I
https://www.youtube.com/redirect?redir_token=hlQ_K6d6mHnFkZjui94DMLxZjVN8MTUzOTY3NDUzOEAxNTM5NTg4MTM4&q=http%3A%2F%2Fwww.ausy.tu-darmstadt.de%2Fuploads%2FSite%2FEditPublication%2FkoertHumanoids2016&event=video_description&v=O7i1qttva2I
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Ewerton, M.; Neumann, G.; Lioutikov, R.; Ben 
Amor, H.; Peters, J.; Maeda, G. (2015). 
Learning Multiple Collaborative Tasks with a 
Mixture of Interaction Primitives, Proceedings of 
the International Conference on Robotics and 
Automation (ICRA), pp.1535--1542.

http://www.youtube.com/watch?v=9XwqW_V0bDw
http://www.ausy.tu-darmstadt.de/uploads/Team/MarcoEwerton/ewerton_icra_2015_seattle.pdf
http://www.ausy.tu-darmstadt.de/uploads/Team/MarcoEwerton/ewerton_icra_2015_seattle.pdf
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You want to test PTMs yourself?

● https://rob.ai-lab.science/wp/resources/code/MATLAB_ProbabilisticTrajectoryMo
del_2016Rueckert.zip Matlab code.

● More details and exercises in: my online lectures at 
https://ai-lab.science

https://rob.ai-lab.science/wp/resources/code/MATLAB_ProbabilisticTrajectoryModel_2016Rueckert.zip
https://rob.ai-lab.science/wp/resources/code/MATLAB_ProbabilisticTrajectoryModel_2016Rueckert.zip
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Rueckert, Elmar; Camernik, Jernej; Peters, Jan; Babic, Jan
Probabilistic Movement Models Show that Postural Control Precedes and Predicts Volitional Motor Control Journal Article

Nature Publishing Group: Scientific Reports, 6 (28455), Impact Factor 4.122(‘17), 2016.

Rueckert, Elmar; Mundo, Jan; Paraschos, Alexandros; Peters, Jan; Neumann, Gerhard
Extracting Low-Dimensional Control Variables for Movement Primitives Inproceedings

Proceedings of the International Conference on Robotics and Automation (ICRA), 2015.

Rueckert, Elmar; Lioutikov, Rudolf; Calandra, Roberto; Schmidt, Marius; Beckerle, Philipp; Peters, Jan
Low-cost Sensor Glove with Force Feedback for Learning from Demonstrations using Probabilistic Trajectory 
Representations Inproceedings

ICRA 2015 Workshop on Tactile and force sensing for autonomous compliant intelligent robots, 2015.

more at: https://rob.ai-lab.science/publications/
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II. Representations of Skills 
& Imitation Learning

I. Kinematics, Dynamics & 
Model Learning 

III. Feedback, Priorities & 
Torque Control 

IV. Reinforcement Learning 
& Policy Search

V. Cognitive Reasoning & 
Planning 

VI. Sensor Integration & 
Fusion
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III. Kalman and Particle 
Filter for Inference

II. Gaussian Processes for 
Dynamics Model Learning 

V. Spiking Neural Networks 
for Motion Planning

I. Bayesian Inference 

IV. Bayesian Optimization for 
Reinforcement Learning 

VI. Probabilistic Movement 
Primitives

Choose your topic!
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Predictive models of rats’ navigation skills

https://docs.google.com/file/d/11mEsbCwqEuA9nh5ZIq0UMxl3Ze3hC9IN/preview
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Predictive models of rats’ navigation skills
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Difference btw. Filtering, Smoothing and Predictions
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Difference btw. Filtering, Smoothing and Predictions
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Localizing a 
burglar.
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Using Smoothing for robot path planning

=
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Smoothing with neural networks

=

● Cannot be implemented in a Recurrent 
Neural Network! 

● Also the alternative of using 1 Layer 
per time step is impractical in FF nets.
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Smoothing in a RNN through forward sampling from a 
learned distribution

● Supervised Model Learning (CD)

● Reward modulated Hebbian Learning

=
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Neural Planning
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For real robot control without smoothing

https://docs.google.com/file/d/17w-X0hVRIsWzyf8CuNlrK3N9LpRIomzj/preview
https://docs.google.com/file/d/1naGHKhhZ3TDiofEfKgUZeQPrYs2a4lUa/preview
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Model Learning in 15 Minutes
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Real Time Adaptation and Control
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https://docs.google.com/file/d/1cbtCg_qEGFSRXN4nZaWbFDte2YFvX5s7/preview
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Efficiency
evaluation
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Factorized population codes for > 2 dimensions
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Tanneberg, Daniel; Peters, Jan; Rueckert, Elmar
Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks Journal Article

Neural Networks - Elsevier, 2018, (Impact Factor of 7.197 - 2017).

Sosic, Adrian; Rueckert, Elmar; Peters, Jan; Zoubir, Abdelhak M; Koeppl, Heinz
Inverse Reinforcement Learning via Nonparametric Spatio-Temporal Subgoal Modeling Journal Article

Journal of Machine Learning Research (JMLR), 2018.

Rueckert, Elmar; Kappel, David; Tanneberg, Daniel; Pecevski, Dejan; Peters, Jan
Recurrent Spiking Networks Solve Planning Tasks Journal Article

Nature Publishing Group: Scientific Reports, 6 (21142), 2016, (Impact Factor of 4.122 - 2017)

Rueckert, Elmar; Neumann, Gerhard; Toussaint, Marc; Maass, Wolfgang
Learned graphical models for probabilistic planning provide a new class of movement primitives Journal Article

Frontiers in Computational Neuroscience, 6 (97), 2013.

more at: https://rob.ai-lab.science/publications/
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Summary

1. How can humans learn new motor skills within few trials?

Learning probabilistic generative models that capture the 
correlations of multiple joints/signals.

● For noisy and high dimensional human and robot data. 
● Can exploit correlations for predictions.
● Low dimensional feature representation for learning.
● Generative model of stroke-based and rhythmic movements with feedback.
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Summary

1. How do humans solve cognitive reasoning tasks in huge spaces?

Learning stochastic neural networks grounded in the 
probabilistic inference framework.

● Simultaneously learning forward, inverse kinematics 
and state transition models through kinesthetic teaching.

● Implements optimal planning through reinforcement learning.
● Online adaptation in few seconds from intrinsic motivation signals.
● Model predictive control implementation on real robots.
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Books:

● Bishop 2006. Pattern Recognition and Machine Learning, Springer. 
● Barber 2007. Bayesian Reasoning and Machine Learning, Cambridge University Press. 
● Murray, Li and Sastry 1994. A mathematical introduction to robotic manipulation, CRC Press. 

Video Lectures:

● videolectures.net on Gaussian Processes, Inference and Reinforcement Learning
● coursea.org on Robotics

Related lecture notes:

● Humanoid Robotics by Prof. Dr. Maren Bennewitz, University of Bonn.
● Lecture notes on learning methods by Prof. Dr. Marc Toussaint, University Stuttgart.
● Lecture notes on dynamics by Prof. Dr. Russ Tedrake, Massachusetts Institute of Technology.

More information about the course content..

free online version

free online version

5 copies at the ZHB

http://videolectures.net/Top/Computer_Science/Machine_Learning/Reinforcement_Learning/
https://www.coursera.org/specializations/robotics
https://www.hrl.uni-bonn.de/teaching/ss17/lecture-humanoid-robotics
https://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/
https://people.eecs.berkeley.edu/~pabbeel/cs287-fa09/readings/Tedrake-Aug09.pdf
http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/091117.pdf
https://www.cds.caltech.edu/~murray/books/MLS/pdf/mls94-complete.pdf
https://vhweb.ub.uni-kiel.de/DB=4/SET=2/TTL=1/SHW?FRST=9
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Thank you for your attention!

Contact:

Universität zu Lübeck
Institute for Robotics and Cognitive Systems
Ratzeburger Allee 160
Building 64, Room 94
23538 Lübeck, Deutschland

Telefon: +49 (0) 451 3101 5209
E-Mail: rueckert@rob.uni-luebeck.de

Disclaimer:
The lecture notes posted on this website are for personal use only. The material is intended for educational purposes only. Reproduction of the material 
for any purposes other than what is intended is prohibited. The content is to be used for educational and non-commercial purposes only and is not to be 
changed, altered, or used for any commercial endeavor without the express written permission of Professor Rueckert. 

How to contact me

https://rob.ai-lab.science

https://rob.ai-lab.science/teaching

