

Integrated Sensor System for Signal Conditioning, Digitization and Interfacing for Terahertz Bolometric Camera

SENSORDEVICES 2019 27 – 31 October 2019, Nice, France

Tomo Markočič, prof. dr. Janez Trontelj

University of Ljubljana, Faculty of Electrical Engineering Laboratory for Microelectronics

Agenda

- Introduction to THz and bolometers
- Idea
 - Existing system
 - Novel system
- Analogue processing
- Low-noise amplifier design
 - Lateral Bipolar Transistor Structure
- Conclusion

THz waves and Bolometers

SENSORDEVICES 2019, 27 – 31 October 2019, Nice, France

THz waves and Bolometers

Existing THz camera system

SENSORDEVICES 2019, 27 – 31 October 2019, Nice, France

Novel system

SENSORDEVICES 2019, 27 – 31 October 2019, Nice, France

SENSORDEVICES 2019, 27 – 31 October 2019, Nice, France

SENSORDEVICES 2019, 27 – 31 October 2019, Nice, France

The integrated circuit

R

ΔR

 $\rightarrow t$

Amplifier

- Low noise amplifier (LNA) design
- Existing amplifier in Complementary metal-oxide-semiconductor (CMOS) technology
 - 5nV/vHz noise at 1kHz
 - 60dB closed loop gain
 - ~900uA current consumption
 - ~0.5mm² area
- Requirement for new amplifier
 - 2nV/vHz
 - Same gain
 - Power consumption not increased
 - Area not increased
 - Same technology (CMOS 0.35um)

CMOS to BJT noise comparison

- (C)MOS Transistor
 - Charge carriers trapped in oxide layer
 - Scattering in inversion layer
 - 1/f dominant noise
- **BJT** (Bipolar Junction Transistor)
 - No inversion layer
 - White noise inversely proportional to collector current

Layers in TSMC 0.35µm CMOS

SENSORDEVICES 2019, 27 – 31 October 2019, Nice, France

Lateral bipolar transistor structure

Purpose of the gate

• Shallow trench isolation (STI)

Purpose of the gate

• Shallow trench isolation (STI)

Test structures

- Initial design taken from a similar CMOS technology of a different fab
- Emitter size 2µm x 2µm
- Device size 13μm x 13μm (array pitch 11.5μm)
- Test structure is an array of 200 devices
- Two structures with different gate length

Test structures measurement

 Aim to determine β factors for both, lateral and vertical collector

$$\beta = I_C / I_B$$

• Sweep collector current for different V_{BC} conditions

X LMFE

Results

In comparison to LAT2 model

- Q1
 - Smaller β_{LAT}
 - Unaffected by V_{BC}
- Q2
 - Better β_{LAT} at higher currents
 - Smaller β_{VERT}

SENSORDEVICES 2019, 27 – 31 October 2019, Nice, France

Amplifier design

Simulation results		
	Existing CMOS LNA	This work
I supply	948.5 µA	499.9 µA
Input noise at 100 Hz	12.86 nV/√Hz	5.062nV/VHz
Input noise at 1 kHz	4.99 nV/√Hz	2.637nV/VHz
Silicon area	0.516 mm ²	0.22 mm ²

Yet to be tested!

Conclusion

- Demonstrated feasibility of novel system
 - Analogue processing shows promising results
 - Reduced hardware cost
- New low-noise amplifier
 - Use of custom structures
 - Promising simulation results
- More work to be done

Thank you for your attention