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Battery Storage For The Grid Reliability

Grid reliability is the greatest concern resulting from the current challenges facing electric utilities.
The argument is that battery storage will play a significant role in meeting the challenges facing
electric utilities by improving the operating capabilities of the grid, lowering cost and ensuring high
reliability, as well as deferring and reducing infrastructure investments. According to the United States
Department of Energy, energy storage technology can help contribute to the overall system reliability
as wind, solar, and other renewable energy sources continue to be added to the grid. Storage
technology will be an effective tool in managing grid reliability and resiliency by regulating generation
fluctuation and improving the grid’s functionality. It will provide redundancy options in areas with
limited transmission capacity, transmission disruptions, or volatile demand and supply profiles. Utility-
scale storage can be instrumental for emergency preparedness because of its ability to provide
backup power, as well as grid stabilization services..



Energy Informatics Research
(Goebel et al. 2014)
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Smart Grid Reliability

Smart Grid: a new class of technology to bring the electricity delivery system into
the 21st century - Network technologies are the backbone of this system
v' Must be adaptable, strong and responsive
v’ $338-5476 billion in the next twenty years to incorporate in DERs,
intelligence technologies, advanced systems, and applications
v’ Tools for optimizing grid operations and to forecast future problems are

crucial within the modern grid design




Before Smart Grid:

One-way power flow,
simple interactions

After Smart Grid:

Two-way power flow,
multi-stakeholder

interactions

Adeiee Yoy ZPNI Freseteton by Joe Mughes
HET Sedurdy dvlahve
Acet 25, 2008



Smart Grid Reliability

Reliability: the degree to which the performances of the elements of the electric
system result in power being delivered to consumers within accepted standards
and in the amount desired - Measured by outage indices
(J The economic cost of power interruptions to U.S. electricity consumers is
S79 billion annually in damages and lost economic activity
(J Power outages can be especially tragic when it comes to life-support
systems in places like hospitals and nursing homes or in facilities such as in

airports, train stations, and traffic control



Smart Grid Reliability (Sultan et al. 2018)

Power Failure

|

Hardware and
technical failures

Environment-related
failures

failures

Operational-related

Equipment Failure

System Owverload

Wildlife

Planned Qutage

Human Errors

Deterioration

Circuits Overload

Squirrel

Tree fell on line

Scheduled work

Switc hing Errors

Failed in Service

Major Storm

Tree grew into line

Public Safety request

Hacking

Short Circuits

Outdated equipment

Customer request

Lightning

Theft'Wandalism




Smart Grid Reliability

Outage Indices

SAIFI Measures system-wide outage frequency for sustained outages

SAIDI Measures annual system-wide outage duration for sustained outages

MAIFI Measures frequency of momentary outages. Momentary outages and
the power surges associated with them can damage consumer
products and hurt certain business sectors.

CAIDI Measures average duration of sustained outage per customer.

CEMI-3 Measures the percentage of customers with three or more multiple
outages. This metric helps to measure reliability at a customer level
and can identify problems not made apparent by system-wide
averages.

CELID-8 Measures the percentage of customers experiencing extended outages
lasting more than 8 hours

Power Quality Power quality metrics include voltage dips/swells, harmonic
distortions, phase imbalance and lost phase(s).




Energy Informatics Enhanced Research Framework
Enriched with the Reliability Research (Sultan et al. 2018)
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Power System Reliability Research Framework (Sultan et al. 2019

Research Theme
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Battery Storage Integration Into The Electric Grid

» Energy storage technology to contribute to the overall
system reliability

= Regulating generation fluctuation
= |mproving the grid’s functionality
= Providing redundancy options in areas with

limited transmission capacity, transmission
disruptions, or volatile demand and supply
profiles

» Storage to promote energy independence and reduce
carbon emissions

» ldentifying optimal locations for energy storage is a
challenge considering the electric grid constraints, the
deployment requirements and the potential benefits to
the grid

Energy . Energy-to-
Storage Use Dlsc.hal'ge Power ratio Examples
Resources Time (kWh/kW)
Provide Double layer
Short instantaneous CE[RIENIE (DL.CS)’
. Seconds or superconducting
discharge frequency : Lessthan 1 .
time regulation services uhies RIS Eieay
. storage (SMES), and
to the grid flywheels (FES).
Useful for power
quality and
reliability, power
balancing and load
following, reserves, Lead acid (LA),
Medium consumer- side Minutes to Between 1 and lithium _ion (Li-ion),
discharge time-shifting, and hours 10 and sodium sulphur
time generation-side (NaS), flywheels may
output smoothing. also be used.
May be designed so
as to optimize for
power density or
energy density.
Useful primarily for
load-following and
time-shifting, and Pumped hydro
can assist RE storage (PHS?’
Medium- integration by comprez:ed air
to-long hedging against Hours to Between 5 and (CTE?;%yangr:eg;ox
discharge weather days 20 n i) teri
time uncertainties and OW DalleTies
solving daily (RFBs)vvhlch_are .
mismateh of RE partlculgrly ﬂt.a){lble in
generation and el e
peak loads.
Useful for seasonal
time shifting
(storing excess
. Lo generation in the Days to Hyd.rogen i
discharge summer and months Over 10 synthetic natural gas
time (SNG)

converting it back
to electricity in the
winter).




Battery Storage Integration Into The Electric Grid

Conceptual Framework for Placement of Utility Scale Battery Storage

Battery Storage Size
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Battery Storage Integration Into The Electric Grid

Factor Definition Tech. Specification | Resource
Battery Storage The battery’s eapacity to hold energy Large centralized Chandy
size battery systems work {2012)
better than smaller, Overton
distributed systems. (2016)
Excess Power Locations where there is potential excess solar | Statistically significant |  Nalder
and/or wind generation areas using kernel et al.
density estimation (2016)
(KDE) where there is
high potential solar
and/or wind
generation
Electricity The maximum amount of electrical energy that The situation when Sultan
demand versus | is being consumed compared to the energy that energy supply is (2016)
supply is being generated by a component (i.e. solar exceeding the demand
or/and wind energy resource) at a given time Sjodin et
al, zo12
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Battery Storage Integration Into The Electric Grid

outcomes. Bundling battery storage system
projects provides economic benefits of scaling.
For example, It costs less to develop a single 24-
MW project than two separate 12-MW projects.

systems is prefered

Factor Definition Tech. Specification | Resource
Nearby Locating the storage to closest voltage Nearby 154-kV or 345- | Overton et
interconnection | transmission interconnection. It provides real- kV substations al, 2016
points time generation balancing more effectively from
a centralized grid resource. In addition, it saves
cost by placing storages close to the voltage
transmission
Battery role Battery role on depends on what the battery will Based on Table 1 Overton et
be doing. Whether a BSS is intended to smooth “Energy Storage al, 2016
output from renewable resources or designed to Technologies”
provide frequency regulation. IEC
Market
Strategy
Board,
2012
Cost Placement decisions are based on the Single centralized Overton et
Effectiveness comparison between cost effectiveness and battery storage al, 2016

ID Substation Name Substation Type
1 WALNUT S -- Sub-transmission
2 ROSEMEAD D -- Distribution
3 GOULD S -- Sub-transmission
4 MESA S -- Sub-transmission
5 LAGUNA S -- Sub-transmission
6 BULLIS D -- Distribution
7 CENTER S -- Sub-transmission
8 CORNUTA D -- Distribution
9 LIGHTHIPE S -- Sub-transmission
10 HASKELL D -- Distribution
11 STADIUM D -- Distribution




EV Charging Infrastructure Integration Into The Electric Grid

Conceptual Framework For Placement of EV Public Charging Stations
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EV Charging Infrastructure Integration Into The Electric Grid

Level 2
Weight

Level 3
Weight

Factor Definition (Low, Mid, [LI.?W, Technical Spees. Reference
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2016;plumer, 2016).
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Geographic Decision Support System Model To Optimize DERS'
Placement

Probability of event, P (event) =

1

14 e(a+bltxl+b2xx2+---+b10txlo)

1

142 718(1.832+-2.516lx1+‘193i12+-.543‘x3+0.543‘14+-1.592'15*.297'X6+-1.039ll7+‘261‘13+.006-19+-0‘579'X10‘!

Households®
Demographic Data

‘ E=A*r*H*PR ‘%
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Placement

Geographic Decision Support System Model To Optimize DERS'
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Study Design and Methodology:
Design Science Research Method (Peffers et al., 2007)

Process lteration
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Battery Storage locations can be assessed geographically to improve the grid reliability
A decision-making framework is essential in the problem resolution




Renewable Energy Sources

Residential Site Transmission & Distribution Network




