
Building a small-scale
multiplatform automated
software testing facility

Maxim Mozgovoy

The University of Aizu

mozgovoy@u-aizu.ac.jp



Primary area: human-like AI for computer games and simulations.

“AI that needs to possess other qualities rather than being good”

Also I have strong interest in practical software development
and previous industrial experience

Hello!

2



My friend’s idea

Your AI

3

Our
people

Great
game

Get rich



We made it (to some extent!)

4

A cool casual tennis game

Released on Win, Mac,
Android, and iOS
Around 1mln downloads
Really good reviews

Released later
than hoped
Profits aren’t stellar yet



“

Nothing works better than just
improving your product.

— Joel Spolsky

5



What’s special about game projects?

Users won’t tolerate bugs [1]

Negative reviews & crashes
cause downranking [2]

Low-rank apps have
no chance on the market

6

Frequent complaints %

Functional error 26.68

Feature request 15.13

App crash 10.51

Network problem 7.39



What’s special about game projects?

They are quite complex (really):

Frontend/backend.

User analytics.

Billing/transactions.

Integration with numerous 3rd-party systems
(social media, advertisements, online profiles)

7



What’s special about game projects?

They rely on (unstable) 3rd-party libraries and tools

They have to be updated regularly

8



What’s special about game projects?

They must run on diverse
hardware and software platforms

They are prone to issues that are hard to test
automatically (graphics, sound, animation)

GUI and animation is deeply integrated into a game

9



What’s special
about game projects?

They contain a large
proportion of code with
high cost of unit testing [3]

10

unit testing
costs

unit testing
benefits



Our approach

Primary emphasis on
extensive testing of the complete game

Synergy of diverse tools

11



Tool #1: Firebase Crashlytics

Embed Crashlytics reporting service into the app

12

Crashes are automatically reported to us
via Internet (along with stack traces)

Identified devices with insufficient RAM for the game



Tool #2: Autobugs and Manual Bugs

Use soft (reporting) asserts and manual reporting tools

13

Report failed non-fatal asserts automatically.
Give the users and testers tools to report easily.

Got numerous bug reports
(wrong physics, animation, GUI flaws, etc.)



Tool #3: Automated smoke testing (autotests)

Ensures that the most important subsystems work

by preforming various simple test scenarios

14

The most cost effective method for identifying
and fixing defects in software [after code reviews]

— Microsoft

“



Our smoke tests

We invested a lot of effort
into building our own
smoke-testing facilities,
and now we find them essential
for subsequent planned projects

15



Our pipeline

16

Repository

Build
machine
(several

builds daily)

Ready game
(5 platforms)



Basic levels of QA

The game can be compiled (ensured by the build machine).

The game doesn’t crash on startup
(it might due to fatal bugs or incorrect partial build)

The game can connect to our backend server.

Early detection is crucial: we need to know
which changeset in our repo causes problems.

17



“

Let’s just test that the game doesn’t
crash and is able to go online

— Our project manager

18



One year later

Every build goes through six
test scenarios; each scenario
takes 30-60 min to complete

19



Points to consider

The game has no “hidden interface”: the testing system
relies on the ordinary user-end UI.

Note the synergy: automated tests also generate autobugs
and crash events, detectable by our other tools!

Autotests are run on three Android, three iOS
and one Windows devices (macOS is planned).

Autotests also report FPS and memory consumption;
They can be run for several hours as stress tests.

20



Example scenario

21

Other scenarios:

Pass tutorial.

Customize player,
upgrade skills.

Link a Facebook
account



Farming and scripting

How to achieve it?

You’ll need to write test scripts.

You’ll need to have a device farm for running tests.

22



The easy way

Use existing device farms offered by Amazon, Bitbar, etc.

Pros: easy setup, thousands of devices.

Cons: quite expensive (~15 USD per minute per device)
(in our case it translates into ~250 USD daily),
device choice is still limited.

Notes: you’ll have to rely on platform-supplied scripting
(before writing scripts one must choose the platform).

23



Our way

Let’s build a device farm ourselves!

24



Own farm: pros and cons

Flexible: we can choose any devices we need.

Inexpensive (in the long run).

Limited to few specific devices.

Requires regular maintenance.

25



Minimal setup

Logically, there are three components involved:

A device executing the test scripts (runner).

A device interfacing with the target platform (server).

A target device running our game.

26

test
runner

test
server

target
device



Software setup

Testing capabilities are available on all major platforms. No
software is necessary, but some configuration is required.

27

Android/iOS/
Win/Mac



Software setup

Test server must run a 3rd-party testing framework.
We chose open-source Appium (https://appium.io).

28

Appium
Android/iOS/

Win/Mac



Software setup

Test runner executes scripts written using a conventional
programming language supported by the framework.

29

Appium
Android/iOS/

Win/Mac
Python +
Appium

libs



How test scripts look like?

Technically, they consist of code like this:

e = appium.find_element_by_class_name('android.widget.EditText')

e.send_keys("hello") # type “hello” into the EditText control

ok = appium.find_element_by_class_name('android.widget.Button')

ok.click() # click the first button on the screen

30



How test scripts look like?

In our game most GUI elements are drawn on the screen
surface and thus not considered “UI” by the operating system.

Thus, we use image recognition:

ib_loc = find_image("input_box.png") # fail test if not found

click_location(ib_loc)

ok_loc = find_image("ok_button.png") # fail test if not found

click_location(ok_loc)
31



How test scripts look like?

32

input_box.png

ok_button.png



How test scripts look like?

Our test scripts are integrated into the whole build process:

A test script checks whether a new build is available.

If yes, this version is tested with a set of scenarios.

Results are summarized and published as an HTML report.

The process is repeated.

HTML reports are used by the testers to check visual glitches
and understand why certain tests fail. 33



Our pipeline

34

Repository

Build
machine

Ready
game

Test
scriptsHTML

reports



Complete hardware setup

35

3 Android
devices

Test runner:

Zotac ZBox MI
(Windows)

Test server 1:

Zotac ZBox E
(Windows)

Test server 2:

Mac Mini

3 iOS
devices



Complete hardware setup

36

Servers

Mobile
devices



Tips, tricks, and notes

Farming isn’t easy!
There are numerous pitfalls…

37



Choosing test devices

When choosing devices, we tried to focus on
hardware diversity and get some low-level models.

Sometimes code fails on certain hardware
(it happens, e.g., on different GPU chips)

Developers usually have reasonable hardware,
so autotests help to make sure the game is
still runs smoothly on low-end devices.

38



Choosing USB hubs

Mobile devices are connected to a server via USB hubs.

Devices should get power through the hubs
(otherwise they will simply discharge).

Surprisingly, it is very difficult to find a hub,
able to charge several attached devices fast enough!

39



Quirks of particular devices

40

Installs the app after several attempts.

Doesn’t unlock the screen.

Doesn’t want to charge from a USB hub.

Asks for regular updates, blocking tests (iOS)



It is still worth the effort

The safety net feeling we have now brought peace to our lives
41



Contact me:
mozgovoy@u-aizu.ac.jp

Thanks!

42

[1] A. Moscaritolo (2017). Google Play Now Favoring 'High-Quality Apps’. PC Magazine,
https://www.pcmag.com/news/355375/google-play-now-favoring-high-quality-apps
[2] H. Khalid et al. (2015) What Do Mobile App Users Complain About? Software,
vol. 32, pp. 70-77
[3] S. Sanderson (2009). Selective Unit Testing – Costs and Benefits.
https://blog.stevensanderson.com/2009/11/04/selective-unit-testing-costs-and-benefits/


