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Objectives & Motivation
• Develop advanced GPR imaging technique for high-

resolution imaging of deeply buried objects
• Define Technique Developed

– Test Technique on Example with Known Outcome
– Evaluate Algorithm on Test Cases

• Determine how well Technique compares to state-of-the-
art solutions

• Determine how effective Technique is when scanning 
from various heights

• Compare Technique with Chirp excitation function
– Explore geometric compensation methods on Chirp scans
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Target GPR imaging objects, tin roofing sheets, were buried at 
various depths. 8 sheets at 0.5,1.0,1.5,2.0,2.75,3.0,3.5 & 4.0meters 
in depth; roughly 2.0meters apart in a dry sand/clay soil mixture. 
These experiments provided ground truth GPR data for study.

Real experiments were performed to 
develop realistic simulations

72”

26”

Tin roofing sheet

4

Presenter
Presentation Notes
Forest Lodge –near Greenville, CA, 60 miles north of Lake Tahoe, KGO’s Bill Wattenburg



5

pulseEKKO 100 Ground Penetrating Radar 

Features:

Multiple Frequency Antennas –

12.5 MHz,25Mhz,50MHz,100MHz&200MHz

Bistatic Operation

Intelligent Transmitter & Receiver

Fiber Optic Cabling

Battery powered

Remote Trigger – Electrical & Optical

Programmable Sampling Interval

Programmable Time Window

Used a variety of COTS GPR hardware

ppuullsseeEEKKKKOOppuullsseeEEKKKKOO®®®® 110000110000



Multistatic Sensor Platform  Based on COTS Sensors

Features:

Antenna Array – 16 channels 
-- 9 Transmitters
-- 8 Receivers

Center Frequency – 200Mhz

Dimension - 22.2 x 16.0 x 28.5 cm

Trace Scan width - 2 meters wide

Multistatic GPR sensors were used

6



High Frequency and Low Frequency radar on a wheeled 
platform in front of test lane containing buried tin sheets at 
Forest Lodge

Developed a number of sensor platforms for 
low frequency sensors
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Tx Rx1
2

3

1 – direct arrival path
2 – ground bounce path
3 – target reflection path

GprMax – FDTD or TLM – Scan simulation program
FDTD – Finite Difference Time Domain – solution of Maxwell’s equations in differential form 
TLM – Transmission-Line Matrix – electrical network model solution to an electromagnetic field 
problem

MatGpr, ReflexW – Scan display & processing programs

Permittivity – measure of how an electric field is affected and affects a dielectric medium.

Ground media with 
relative permittivity - 𝜺𝜺𝒓𝒓

air

Modeling Basics

Speed of signal in a medium is 
related to the relative permittivity

Speed of signal medium  
= �𝑐𝑐 𝜀𝜀𝑟𝑟 ∗ 1𝑒𝑒−9 m/ns

C = speed of light = 3𝑒𝑒8 m/s



(a) (b)
“Ground truth” GPR scan results from the pulseEKKO 100 radar
over the Forest Lodge test site at 25 MHz. Raw data is depicted
in (a) while processed data is depicted in (b).

No clear Pattern emerges.

4 m 
depth

Real data experiments at low frequency in 2-D; 
raw and processed 
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Processed 3-D data scanned by a multistatic
radar over the Forest Lodge test site of buried tin
sheets of known depth. 5 roofing sheets are
visible in a stair step fashion.

Real data experiments at a medium frequency 
in 3-D; processed data only
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• Resample Scan axis – increase number of traces
• Resample Depth (time) axis – increase number of depth elements
• Relocated “time zero” – remove ground bounce
• Remove global background trace information (average trace)

• Add all traces, divide by the number of traces – average trace
• Remove DC component from each trace (arithmetic mean)

• Sum all data in a trace, divide by number of terms – arithmetic mean
• Applied Dewow filter – high pass filter; remove low frequency 

component
• Applied gain by inverse amplitude decay – applies gain function to 

compensate for the mean or median attenuation

Several methods were combined to process real data 
scans to enhance target viewing, available from 

MatGpr routine
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2-D GprMax model of buried tin roofing sheets, 
simulating the Forest Lodge test site

2-D models of simulated data were developed  
for FDTD analysis using GprMaxV2.0 Software
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(a) (b)

FDTD analysis results of the 2-D model using GprMax at 25 MHz (a),
showing minimal detail and 900 MHz (b) showing distinct detail.
Unexpected results in (b) are the reflections underneath each tin sheet
reflection which has been found to occur in actual scans.

Analysis of simulated data at low & very high 
frequencies
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FDTD analysis results from GprMax for 2-D model at 25 MHz, simulating 
buried roof sheets at Forest Lodge.  Scans are of each tin sheet, 8 in all.  
Tin sheet (a) represents a buried sheet at 0.5 meters, (b) represents 1.0 
meter buried sheet.  It follows that (c), (d), (e), (f), (g), and (h) represent 1.5, 
2.0, 2.75, 3.0, 3.5 and 4.0 meter buried sheets

a b c

d e f

g h

Analysis of simulated data for tin sheets 
modeled separately using GprMaxV2.0
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GprMax 3-D model of the Forest Lodge site of buried 
objects.  This model was used to study FDTD response 
experiments conducted for this study

A 3-D FDTD model was developed of simulated 
data using GprMaxV2.0 Software
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3-D FDTD Analysis results at 200MHz.  Plots (a) through (h) depict the software 
results along RXs representing slices of depth and scan length at points along 
the Z-axis.  All 8 of the simulated buried tin sheets are shown.

a b c

d e f

g h

2-D slices depicting 3-D simulated data 
modeling results from GprMaxV2.0
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Expectation-Maximization algorithm (EM) using a Gaussian Mixture Model 
(GMM) feature is the optimization problem solver of choice to increase 
resolution of Ground Penetrating Radar (GPR) for deeply buried targets

• Assume GPR scans of the same target at differing frequencies form a 
cluster

• The EM algorithm is good at working with clusters
• Determining which items belong and which do not.
• Missing Data can be determined with increase probability
• Provides an iterative computation of maximum likelihood estimation 

when the observed data is incomplete.
• Using a GMM to determine mixture weights for each scan through the 

use of mean and standard deviation of each scan in the cluster.
• Iterate until the log likelihood of the GMM objective function does not 

change much from iteration to iteration (choose the fixed value 
difference)

• Other distributions can be used but Gaussian is often used when the 
exact distribution of data is unknown.

Describe Optimization problem solver of 
choice
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EM Algorithm with GMM

Expectation step (expected value)
• Compute the conditional expectation of the group membership 

weights for data points including unobservable data given 
mean and covariance of data.

Maximization Step (Maximize parameters)
• Compute new parameter values for mixture weights, mean 

and covariance to maximize the finite mixture model
• Convergence is signaled by log likelihood of finite mixture 

model objective function, 𝑓𝑓 𝑥𝑥𝑖𝑖;𝛳𝛳 , not appearing to change 
substantially from one iteration to the next
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Maximum Likelihood Estimation
Vs

Expectation-Maximization Gaussian Mixture Model
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Given a random sample X1, X2, …, Xn independent and identically distributed (i.i.d.)
with a probability density function 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝛳𝛳), where 𝛳𝛳 is the unknown parameter to be
estimated; the joint probability density function (PDF) can be called L(𝛳𝛳):

L(𝛳𝛳) = P(X1 = 𝑥𝑥1, X2 = 𝑥𝑥2, ..., Xn = 𝑥𝑥𝑛𝑛) = 𝑓𝑓 𝑥𝑥1;𝜃𝜃 ∗ 𝑓𝑓 𝑥𝑥2;𝜃𝜃 …𝑓𝑓 𝑥𝑥𝑛𝑛;𝜃𝜃 =   ∏𝑖𝑖=1
𝑛𝑛 𝑓𝑓 𝑥𝑥𝑖𝑖;𝜃𝜃

Assuming the PDF is Gaussian with variance, 𝜎𝜎2, known and the mean, 𝜇𝜇, unknown 
then the likelihood equation is:

L(𝜇𝜇) = ∏𝑖𝑖=1
𝑛𝑛 𝑓𝑓 𝑥𝑥𝑖𝑖; 𝜇𝜇,𝜎𝜎2 = 𝜎𝜎−𝑛𝑛 2𝜋𝜋 − ⁄𝑛𝑛 2 exp − 1

2𝜎𝜎2
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝜇𝜇 2

Log (L(𝜇𝜇)) =  −𝑛𝑛 log 𝜎𝜎 − 𝑛𝑛
2

log 2𝜋𝜋 − ∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 – 𝜇𝜇 2

2𝜎𝜎

𝜕𝜕
𝜕𝜕𝜇𝜇

)lo g( 𝐿𝐿(𝑢𝑢 ) = −2 −1 �
𝑖𝑖=1

𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝜇𝜇
2𝜎𝜎2

= 0

solve for the mean 𝜇𝜇 by taking the partial derivative with respect to 𝜇𝜇 and setting the 
result equal to 0, solving for 𝜇𝜇; the maximum likelihood estimate

𝜇𝜇 =
∑𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖
𝑛𝑛

MLE estimate

MLE estimation
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The MLE process becomes hard when there is more than one data set and only part of 
the combined data sets can be observed (hidden).

A mixture distribution has a PDF of the form 𝑓𝑓 𝑥𝑥 = ∑𝑘𝑘=1𝐾𝐾 𝛼𝛼𝑘𝑘𝑓𝑓(𝑥𝑥;𝜃𝜃𝑘𝑘). Where there
are K number of components in the mixture model for each k. The joint PDF with n
observed data for each k is defined as follows:

𝐿𝐿 𝑥𝑥|𝛼𝛼, 𝜃𝜃𝑘𝑘 = ∏𝑖𝑖=1
𝑛𝑛 ∑𝑘𝑘=1𝐾𝐾 𝛼𝛼𝑘𝑘𝑓𝑓 𝑥𝑥𝑖𝑖; 𝜃𝜃𝑘𝑘

with mixture weights 𝛼𝛼𝑘𝑘, complete observed data set x with constraints ∑𝑘𝑘 𝛼𝛼𝑘𝑘 = 1
and 𝛼𝛼𝑘𝑘 ≥ 0 for all k.

Log ( 𝐿𝐿 𝑥𝑥|𝛼𝛼,𝜃𝜃𝑘𝑘 = ∑𝑖𝑖=1𝑛𝑛 𝑙𝑙𝑙𝑙𝑙𝑙 ∑𝑘𝑘=1𝐾𝐾 𝛼𝛼𝑘𝑘𝑓𝑓 𝑥𝑥𝑖𝑖;𝜃𝜃𝑘𝑘

The log of sums makes solving this equation using an MLE method challenging.
There are many local maxima that are less than the global maximum. The weight
values must be chosen. Choosing the weight value that arrives at a global
maximum is not likely in short order; the choice is a chance guess for each
calculation.

MLE estimation, con’t
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EM Simple –
• Computes probabilities of each possible completion of missing data; 

“expected value” – E-step
• Creates a weighted training set of all possible completions  - E-step
• A modified MLE processes with the weighted training set; providing new 

parameter estimates – M-step

EM Simple

Reference:
C. B. Do, S. Batzoglou, “What is the Expectation Maximization Algortihm,” 
Nature Biotechnology vol. 26, Issue 8, pp. 897-899, 2008, DOI 
10.1038/NTBL1406. 
http://www.nature.com/nbt/journal/v26/n8/pdf/nbt1406.pdf, 2019.1.15.

http://www.nature.com/nbt/journal/v26/n8/pdf/nbt1406.pdf
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a finite mixture 𝑓𝑓 𝑥𝑥;𝜃𝜃 of K components as mixtures of Gaussian functions:

𝑓𝑓 𝑥𝑥; 𝜃𝜃 = �
𝑘𝑘=1

𝐾𝐾

�𝛼𝛼𝑘𝑘𝑝𝑝𝑘𝑘(𝑥𝑥| 𝜃𝜃𝑘𝑘

- 𝑝𝑝𝑘𝑘 𝑥𝑥 𝜃𝜃𝑘𝑘 are K mixture components with a distribution defined
over 𝑝𝑝 𝑥𝑥|𝜃𝜃𝑘𝑘 with parameters 𝜃𝜃𝑘𝑘 = 𝜇𝜇𝑘𝑘 ,𝐶𝐶𝑘𝑘 (mean, covariance)

𝑝𝑝𝑘𝑘 𝑥𝑥 𝜃𝜃𝑘𝑘 =
1

2𝜋𝜋 ⁄𝑑𝑑 2 𝐶𝐶𝑘𝑘 ⁄1 2 𝑒𝑒
− 1
2 𝑥𝑥−𝜇𝜇𝑘𝑘

𝑇𝑇
𝐶𝐶𝑘𝑘−1 𝑥𝑥−𝜇𝜇𝑘𝑘

- 𝛼𝛼𝑘𝑘 are the mixture weights, where ∑𝑘𝑘=1𝐾𝐾 𝛼𝛼𝑘𝑘 = 1.

- 𝑥𝑥𝑖𝑖 , … … … , 𝑥𝑥𝑛𝑛 Data set for a mixture component in d dimensional space.

EM GMM estimation
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E-Step –

𝑤𝑤𝑖𝑖𝑘𝑘= 𝑝𝑝𝑘𝑘 𝑥𝑥𝑖𝑖|𝜃𝜃𝑘𝑘 ∗𝛼𝛼𝑘𝑘
∑𝑚𝑚=1
𝐾𝐾 𝑝𝑝𝑚𝑚 𝑥𝑥𝑖𝑖|𝜃𝜃𝑚𝑚 ∗𝛼𝛼𝑚𝑚

membership weights 

for  1 ≤ 𝑘𝑘 ≤ 𝐾𝐾, 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁; with constraint ∑𝑘𝑘=1𝐾𝐾 𝑤𝑤𝑖𝑖𝑘𝑘 = 1

M-Step –

𝑁𝑁𝑘𝑘 = ∑𝑖𝑖=1𝑁𝑁 𝑤𝑤𝑖𝑖𝑘𝑘

𝛼𝛼𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑁𝑁𝑘𝑘
𝑁𝑁

, for  1 ≤ 𝑘𝑘 ≤ 𝐾𝐾

𝜇𝜇𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 = 1
𝑁𝑁𝑘𝑘

∑𝑖𝑖=1𝑁𝑁 𝑤𝑤𝑖𝑖𝑘𝑘 ∗ 𝑥𝑥𝑖𝑖 for  1 ≤ 𝑘𝑘 ≤ 𝐾𝐾

𝐶𝐶𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 = 1
𝑁𝑁𝑘𝑘

∑𝑖𝑖=1𝑁𝑁 𝑤𝑤𝑖𝑖𝑘𝑘 ∗ 𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛
𝑇𝑇

Convergence (log likelihood of 𝑓𝑓 𝑥𝑥;𝜃𝜃 ) –

Log 𝑙𝑙 𝜗𝜗 = ∑𝑖𝑖=1𝑁𝑁 log𝑓𝑓 𝑥𝑥𝑖𝑖;𝜃𝜃 = ∑𝑖𝑖=1𝑁𝑁 log∑𝑘𝑘=1𝐾𝐾 𝛼𝛼𝑘𝑘𝑝𝑝𝑘𝑘 𝑥𝑥𝑖𝑖 𝜃𝜃𝑘𝑘

EM GMM estimation, con’t

Repeat e-step, m-step & log-likelihood until log-likelihood no longer changes 
(or difference is small)
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H T T T H H T H T H coin B

H H H H T H H H H H coin A

H T H H H H H T H H coin A

H T H T T T H H T T coin B

T H H H T H H H T H coin A

Coin A and Coin B recorded tosses

2 coins are tossed creating 5 sets of 10 flip outcomes.  All data 
is known; which coins, A or B produced which of the 5 sets. 

MLE process is straight forward to determine the 
probability of coin A landing on a head (𝛳𝛳A) and the 
probability of coin B landing on a head (𝛳𝛳B).

𝜃𝜃𝐴𝐴 =
𝑁𝑁𝑢𝑢𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 𝑙𝑙𝑓𝑓 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑐𝑐𝑙𝑙𝑖𝑖𝑛𝑛 𝐴𝐴

𝑇𝑇𝑙𝑙𝑇𝑇𝑒𝑒𝑙𝑙 𝑙𝑙𝑓𝑓 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑛𝑛𝑒𝑒 𝑇𝑇𝑒𝑒𝑖𝑖𝑙𝑙𝑒𝑒, 𝑐𝑐𝑙𝑙𝑖𝑖𝑛𝑛 𝐴𝐴 =
24

24 + 6 = 0.80

𝜃𝜃𝐵𝐵 =
𝑁𝑁𝑢𝑢𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 𝑙𝑙𝑓𝑓 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 𝑐𝑐𝑙𝑙𝑖𝑖𝑛𝑛 𝐵𝐵

𝑇𝑇𝑙𝑙𝑇𝑇𝑒𝑒𝑙𝑙 𝑙𝑙𝑓𝑓 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑒𝑒𝑛𝑛𝑒𝑒 𝑇𝑇𝑒𝑒𝑖𝑖𝑙𝑙𝑒𝑒, 𝑐𝑐𝑙𝑙𝑖𝑖𝑛𝑛 𝐵𝐵 =
9

9 + 11 = 0.45

2 coin problem
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The EM process is 2 steps, E-step and M-step.  (which coin was flipped is unknown) 
The E-step for this case is defined as:
• assume coins A and B are equally likely; (𝜆𝜆 = 0.5). 
• start with some initial guess for probability of heads for coin A and coin B.
• compute the expected number of heads and tails for each coin.

Probability of observation coming from either coin A or coin B or both:

P(x | 𝛳𝛳) = 𝜆𝜆 𝜃𝜃𝐴𝐴ℎ 1 − 𝜃𝜃𝐴𝐴 𝑡𝑡 + 1 − 𝜆𝜆 𝜃𝜃𝐵𝐵ℎ 1 − 𝜃𝜃𝐵𝐵 𝑡𝑡

Probability of observation coming from coin A:

P(y = coin A | x, 𝛳𝛳) = P(A) = 𝜆𝜆 𝜃𝜃𝐴𝐴
ℎ 1−𝜃𝜃𝐴𝐴 𝑡𝑡

𝜆𝜆 𝜃𝜃𝐴𝐴
ℎ 1−𝜃𝜃𝐴𝐴 𝑡𝑡 + 1−𝜆𝜆 𝜃𝜃𝐵𝐵

ℎ 1−𝜃𝜃𝐵𝐵 𝑡𝑡

Probability of observation coming from coin B:

P(y = coin B | x, 𝛳𝛳) = P(B) = 1−𝜆𝜆 𝜃𝜃𝐵𝐵
ℎ 1−𝜃𝜃𝐵𝐵 𝑡𝑡

𝜆𝜆 𝜃𝜃𝐴𝐴
ℎ 1−𝜃𝜃𝐴𝐴 𝑡𝑡 + 1−𝜆𝜆 𝜃𝜃𝐵𝐵

ℎ 1−𝜃𝜃𝐵𝐵 𝑡𝑡

Expected number of heads for coin A:  P(A)*(# of heads in observation set 1, 2, … 5) 

Expected number of heads for coin B:  P(B)*(# of heads in observation set 1, 2, … 5)
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Expected number of tails for coin A: P(A)*(# of tails in observation set 1, 2, … 5) 

Expected number of tails for coin B: P(B)*(# of tails in observation set 1, 2, … 5)

E–Step con’t

The M-step for this case is defined as:
• maximize the estimated parameters, computing new estimates.

𝜃𝜃𝐴𝐴 =
∑𝑐𝑐𝑙𝑙𝑖𝑖𝑛𝑛 𝐴𝐴 𝑛𝑛𝑢𝑢𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 𝑙𝑙𝑓𝑓 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

∑ 𝑐𝑐𝑙𝑙𝑖𝑖𝑛𝑛 𝐴𝐴 𝑛𝑛𝑢𝑢𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 𝑙𝑙𝑓𝑓 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + ∑𝑐𝑐𝑙𝑙𝑖𝑖𝑛𝑛 𝐴𝐴 𝑛𝑛𝑢𝑢𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 𝑙𝑙𝑓𝑓 𝑇𝑇𝑒𝑒𝑖𝑖𝑙𝑙𝑒𝑒

𝜃𝜃𝐵𝐵 =
∑𝑐𝑐𝑙𝑙𝑖𝑖𝑛𝑛 𝐵𝐵 𝑛𝑛𝑢𝑢𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 𝑙𝑙𝑓𝑓 𝑇𝑇𝑒𝑒𝑖𝑖𝑙𝑙𝑒𝑒

∑ 𝑐𝑐𝑙𝑙𝑖𝑖𝑛𝑛 𝐵𝐵 𝑛𝑛𝑢𝑢𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 𝑙𝑙𝑓𝑓 ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 + ∑𝑐𝑐𝑙𝑙𝑖𝑖𝑛𝑛 𝐵𝐵 𝑛𝑛𝑢𝑢𝑁𝑁𝑁𝑁𝑒𝑒𝑁𝑁 𝑙𝑙𝑓𝑓 𝑇𝑇𝑒𝑒𝑖𝑖𝑙𝑙𝑒𝑒
 

 

 

 

Initial guess: 𝛳𝛳A  = 0.60, 𝛳𝛳B = 0.50  Coin A Coin B 
Observations Nh Nt P(A) P(B) Nh Nt Nh Nt 

x1: HTTTHHTHTH 5 5 0.45 0.55 2.2 2.2 2.8 2.8 
x2: HHHHTHHHHH 9 1 0.81 0.20 7.2 0.8 1.8 0.2 
x3: HTHHHHHHTH 8 2 0.73 0.27 5.9 1.5 2.1 0.5 
x4: HTHTTTHHTT 4 6 0.35 0.65 1.4 2.1 2.6 3.9 
x5: THHHTHHHTH 8 2 0.64 0.35 4.5 1.9 2.5 1.1 

 sum 21.2 8.5 11.8 8.5 
 

𝜃𝜃𝐴𝐴 =
21.2

21.2 + 8.5 = 0.71 𝜃𝜃𝐵𝐵 =
11.8

11.8 + 8.5 = 0.58

New estimates after 1 iteration

After 8 iterations 𝜃𝜃𝐴𝐴 = 0.8, 𝜃𝜃𝐵𝐵= 0.52


		







		Initial guess: 𝛳A  = 0.60, 𝛳B = 0.50 

		Coin A

		Coin B



		Observations

		Nh

		Nt

		P(A)

		P(B)

		Nh

		Nt

		Nh

		Nt



		x1: HTTTHHTHTH

		5

		5

		0.45

		0.55

		2.2

		2.2

		2.8

		2.8



		x2: HHHHTHHHHH

		9

		1

		0.81

		0.20

		7.2

		0.8

		1.8

		0.2



		x3: HTHHHHHHTH

		8

		2

		0.73

		0.27

		5.9

		1.5

		2.1

		0.5



		x4: HTHTTTHHTT

		4

		6

		0.35

		0.65

		1.4

		2.1

		2.6

		3.9



		x5: THHHTHHHTH

		8

		2

		0.64

		0.35

		4.5

		1.9

		2.5

		1.1



		

		sum

		21.2

		8.5
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Square Wave Triangle Wave Sawtooth

Freq. 
components

Odd # 
Harmonics

Odd # 
Harmonics

All harmonics

Relative 
Amplitude

1/Harmonic # 1/Harmonic # 
squared

1/Harmonic #

Phase All Harmonics
in phase

Every other 
Harmonic 180 
deg. Out of 
phase

Even 
Harmonics
180 deg. Out 
of phase

Harmonic -- whole # multiples of fundamental frequency

Some periodic signal characteristics

Trial Example & Results
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Trial Example Preparation & 
Processing

• For Square wave example create Odd 
harmonic sine waves

• Make magnitude of each sine wave equal to 1

• Process sine waves with EM GMM Algorithm

• Examine result

29



Trial Example & Results con’t
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Square Wave attempt Triangle Wave attempt
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- This implementation of the GMM only changes the Magnitude of the mixture 
signals.

The convergence to Square or Triangle wave does not quite complete due to the 
constraint that the sum of membership weights (𝛼𝛼𝑖𝑖𝑘𝑘) = 1;  and the sum of the mixture 
weights (𝑊𝑊𝑘𝑘) = 1. If one were to sum the weights of Square wave harmonics, one would 
find they are >1  (1 + 1/3 + 1/5 + 1/7 ….).  A new constraint must be considered to make 
the EM algorithm work well.
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Ground Penetrating Radar Example



Test Case 1

Air gap
5m

Target --
perfect electrical 
conductor in moist 
sand medium

Dimensions -- height vs width (25 x 10) more like borehole.
1 Tx & 1 Rx (0.25 meter separation) stepped across width

33
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Presentation Notes
Moist Sand Relative permittivity – εr – 9; Velocity – 0.1 m/ns;  Free space Relative permittivity – εr – 1; Velocity – 0.3 m/ns



Simulated GPR Scan using GprMax, no target, Tx/Rx 5 
meters above ground
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Direct Arrival

Ground Bounce



Simulated GPR Scan using GprMax, no target, Tx/Rx 5 
meters above ground
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Direct Arrival

Ground Bounce



Simulated GPR Scan using GprMax, no target, Tx/Rx 5 
meters above ground
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Direct Arrival

Ground Bounce
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TWTT

GPR trace depicting Two-way-transit-time for 2 frequencies of same target.



GPR Scans 20 & 30 MHz w/o processing

Ground Bounce / Direct Arrival

Target Reflection
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GPR Scans 50 & 100 MHz w/o processing
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GPR Signal traces for 500 & 900 MHz 
w/o processing
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Compositing GPR Scans of Test Case 1, Tx/Rx 5 meters above 
ground

41



target

EM Approach

• Remove direct arrival/ground bounce by subtracting GPR 
scan with target from GPR trace w/o target

• Expectation Step
• Maximization step
• Iterate until convergence

Target depth correct (~240ns two-way travel time); edge detection error 
due to borehole model & reflection dominated by lower Frequencies

42



Dougherty Approach
M. E. Dougherty, P. Michaels, J. R. Pelton, L. M. Liberty, “Enhancement of Ground Penetrating Radar 
Data Through Signal Processing”, Symposium on the Application of Geophysics to Engineering and 
Environmental Problems 1994, pp. 1021-1028, Jan 1994, DOI 10.4133/1.2922053

• Align each trace by the direct arrival pulse in each trace
• Remove DC shifts, Low frequency “wow” component
• Scale each trace by the L2 norm of the direct arrival pulse
• Sum traces  direct arrival estimate; Subtract estimate from each trace
• Gain recovery
• Equal weighting applied to each frequency trace while summed

Ground 
bounce

target

Test Case 1

Depth indication less crisp than EM due to addition of low frequencies; ground 
bounce visible; limited edge detection problem. 43
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Trace 18 of 36 traces total; roughly 5 m 
out of 10 m in total distance in the x 
direction of Test Case 1 model
- Dougherty
- EM process
- Dougherty exponential gain 

(gain constant (g) = 10)

𝑁𝑁 𝑖𝑖 = 𝑖𝑖 ∗ 𝑒𝑒 𝑖𝑖 ∗ 𝑒𝑒𝑖𝑖∗𝑔𝑔∗
𝑑𝑑𝑡𝑡
1000

i - sample; 
a(i) - ith sample of original 

amplitude trace.

Width larger

Translates to 
depth uncertainty

remaining
Direct arrival
Ground bounce



Booth Approach
A. D. Booth, A. L. Endres, T. Murray, “Spectral Bandwidth Enhancement of GPR Profiling Data 
Using Multiple-Frequency Compositing”, Journal of Applied Geophysics, vol 67, pp. 88-97, Jan 
2009, DOI 10.1016/j.jappgeo.2008.09.015.

Method One – Simple summation attributed to Dougherty

Method Two – Scaled summation approach
• Determine the maximum value of each frequency spectra
• Equalize each spectra
• Value used to equalize each spectra provide the signal weighting prior to 

summation

Method Three -
• Determine frequency spectra of each trace
• Determine maximum value of each spectra; use these values to equalize 

spectra then use these values as weights for each trace when summing
• Shift traces to line up main peaks of the direct arrival signal for each 

frequency
• Sum all traces

Method Four – Dominant Frequency Amplitude Equalization (DFAE)
• Average spectra creating ensemble estimate for each frequency
• Equalize ensemble spectra for all frequencies (magnitude needed to 

equalize spectrum determines the weight for that frequency.)
• Sum all traces with appropriate weight. 45



Optimal Spectral Whitening (OSW); alternative Booth weighting method
• Weighting factors are developed from a least-squares analysis (solve 

equation AW= S for W(weights)
• Determine frequency spectra of each trace
• Average trace spectra for each frequency
• For one averaged frequency spectra, determine the magnitude for the 

value of each scan frequency. (in 20 Mhz spectra find magnitude for 30, 
50, 100, etc. for example. Determines 1 row of matrix A.

• Repeat for other averaged spectra (1 row for each spectra, 1 column 
for each magnitude)

• S matrix is the desired spectral amplitude at a frequency.
• Solve for W matrix 𝑊𝑊 = 𝐴𝐴𝑇𝑇𝐴𝐴 −1𝐴𝐴𝑇𝑇𝑆𝑆
• Combine frequencies for a trace using weighting function; repeat for 

each trace

• Time Variant
• Choose time window greater than longest wavelet period to be sampled 

(my case 20 MHz  50 ns)
• Each trace is comprised of several time windows
• Repeat above steps (OSW) for all analysis time windows
• Linearly interpolate the weighting function between time window centers
• Combine traces using weighting function

Booth Approach con’t
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Booth Approach con’t

target

Muted –
Ground bounce removed by setting 
= small number per Booth

OSW method with 1 window

Test Case 1

Target depth correctly identified but depth indication is broader than 
Dougherty and EM; edge detection problem.

47
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Trace 18 of 36 total; roughly 5 m out of 10 m Test Case 1 model
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Test Case 1

Booth Method 3

Booth OSW

Booth DFAE

EM process



Bancroft Approach
S. W. Bancroft, “Optimizing the Imaging of Multiple Frequency GPR Datasets using 
composite Radargrams: An Example from Santa Rosa island, Florida”, PhD dissertation, 
University of South Florida, 2010.

Amplitude Envelope Equalization technique (AEE)
• Get absolute value of Hilbert transform of each trace (envelope)
• Average envelopes for all traces for one frequency
• Compute weights: average envelope of lowest frequency divided by 

average envelope of each frequency
• Combine traces using weights

Muted –
Ground bounce removed by setting 
= small number per Booth

target
Test Case 1

Depth indication sharp but broader than EM method; edge detection problem
50
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Test Case 1

EM process 2-DBancroft AEE 2-D

Bancroft AEE 1-D

EM process 1-D



Test Case 2

Targets (8) --
perfect electrical 
conductor in dry 
sand medium

Air gap 
0.5m
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EM processed GPR Scan tracesEM processed GPR Scan

EM GMM Results – test case 2

All 8 plates are depicted; two-way travel time correct (approx. 50, 70, 100, 
116, 148, 160, 190 & 208ns); edge detection less crisp as one descends 
in depth.
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Dougherty Approach Result
Test Case 2

Only 5, barely 6 of 8 plates visible; edge detection a problem
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Dougherty response to Test 
Case 2 with exponential gain 
function.

Dougherty response to Test 
Case 2 without exponential gain 
function.

EM response to Test Case 2



Booth Approach Result

Test Case 2

Ground bounce visible due to Booth mute process; only 4 and barely 5 
and 6 of 8 plates visible; edge detection poorer than EM comparable to 
Dougherty.
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Bancroft Approach Result
Test Case 2

Only 4 of 8 plates visible with possibility of 3 more; ghost plates evident at 
100ns & 150ns; edge detection better than Booth & Dougherty on par with EM.

57



58

EM process 2-DBancroft AEE 2-D

Test Case 2
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GPR Test Case 3, (8) roofing sheets 2 
meters long, 0.1 meters thick, buried at 
8 different levels, in non-uniform 
media.

Dry sand (𝜀𝜀𝑟𝑟 − 3)

Clay (𝜀𝜀𝑟𝑟−5) Granite (𝜀𝜀𝑟𝑟−4)

Concrete(𝜀𝜀𝑟𝑟−6)

GPR Scan traces

EM processed GPR Scan traces
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Standoff GPR
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Test Case 1 Style EM process 2-D

10 meters

40 meters
20 meters

Free-Space (𝜀𝜀𝑟𝑟 − 1)
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Free-Space (𝜀𝜀𝑟𝑟 − 1)

Dry sand (𝜀𝜀𝑟𝑟 − 3)

Test Case 2 Style EM process 2-D

5 meters

10 meters 20 meters
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Free-Space (𝜀𝜀𝑟𝑟 − 1)

Dry sand (𝜀𝜀𝑟𝑟 − 3)

Test Case 2 Style EM process 2-D

40 meters
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Free-Space (𝜀𝜀𝑟𝑟 − 1)

Dry sand (𝜀𝜀𝑟𝑟 − 3)

Clay (εr−5) Granite (𝜀𝜀𝑟𝑟−4)

Concrete(𝜀𝜀𝑟𝑟−6)

Limestone (𝜀𝜀𝑟𝑟 − 7)
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Free-Space (𝜀𝜀𝑟𝑟 − 1)

Dry sand (𝜀𝜀𝑟𝑟 − 3)

Clay (εr−5) Granite (𝜀𝜀𝑟𝑟−4)

Concrete(𝜀𝜀𝑟𝑟−6)

Limestone (𝜀𝜀𝑟𝑟 − 7)

Test Case 3 Style EM process 2-D

40 meters
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Chirp Excitation Function
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Computed Chirp Signal
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Trace 18 of 36 traces 

Chirp excitation signal response with direct
arrival and ground bounce removed.
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Chirp excitation signal response with
direct arrival and ground bounce
removed.

Test Case 1 Style EM process 2-D



Test Case 2

Targets (8) --
perfect electrical 
conductor in dry 
sand medium

Air gap 
0.5m
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EM processed
0 meters

5 meters

Chirp excitation
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Free-Space (𝜀𝜀𝑟𝑟 − 1)

Dry sand (𝜀𝜀𝑟𝑟 − 3)

10 meters

Test Case 2 style

EM processed Chirp processed
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Free-Space (𝜀𝜀𝑟𝑟 − 1)

Dry sand (𝜀𝜀𝑟𝑟 − 3)

Granite (𝜀𝜀𝑟𝑟−4)
Clay (εr−5)

Concrete(𝜀𝜀𝑟𝑟−6)

𝐿𝐿𝑖𝑖𝑁𝑁𝑒𝑒𝑒𝑒𝑇𝑇𝑙𝑙𝑛𝑛𝑒𝑒 (𝜀𝜀𝑟𝑟 − 7)

5 meters

EM processed Chirp processed

Test Case 3
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Chirp processed

10 meters

20 meters

10 meters

20 meters

EM processed



Observations
• In GPR imaging, there is a need to image deeply buried objects with 

high-resolution
– Problem: High-resolution requires higher frequencies, but high 

frequencies have more attenuation
– Solution: Need to use both low frequencies (for depth) and high 

frequencies (for resolution) for GPR imaging
• Without actual GPR equipment, I have shown that simulations match 

real experimental data quite accurately, and therefore can be useful for 
algorithm development inexpensively.

• The EM GMM algorithm works well for hidden data problems, unlike 
Maximum Likelihood Estimation.

– MLE takes derivative of joint PDF with respect to unknown variable; solving for that 
variable (max value is determined).

– EM GMM with observations hidden the joint PDF becomes a log of sums, the 
derivative of the log of sums is hard to calculate and solution variables must be 
guessed; max value convergence not guaranteed, using E-Step & M-Step creates 
MLE sub-problems guaranteed to converge to maximum value.

• The EM GMM algorithm works reasonably well for summing sine waves 
of a particular set of frequencies into a square or triangle wave.
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Conclusions
• The Expectation-Maximization technique with the Gaussian Mixture 

model feature, performs reasonably well in producing a good image at the 
surface and at depth in various media (homogenous and non-
homogenous).

• With EM GMM, the target is illuminated at the defined depth in a more 
definitive manner than just adding frequency scans together.

• A test of a more complex structures produces a positive result also.
• Several buried objects
• Non-homogenous media

• When compared to 3 other methods (Dougherty, Booth, and Bancroft), the 
EM algorithm still performs well, out performing most.

• EM GMM algorithm performed well with Tx/Rx at various heights above 
ground.

• EM GMM performed better in depth detection than Chirp signals but 
required more passes over a target to generate the required number of 
frequencies to sum. Edge detection was worse for the EM GMM process.
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• There are problem areas uncovered by this study which bear future 
study

• Edge detection capability.
• Reliably removing direct arrival/ground bounce without removing 

target data.
• How to best align trace starting points across frequencies (lining 

up each trace by the direct arrival pulse then process, for 
example).

• More complicated models should be used also.

Conclusions, cont.
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the United States Government.
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EM process

Wider scan area to show the expected hyperbola
and address the “bore hole” question on Test Case 1
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Exponential Gain Recovery Function Example

𝑁𝑁 𝑖𝑖 = 𝑖𝑖 ∗ 𝑒𝑒 𝑖𝑖 ∗ 𝑒𝑒𝑖𝑖∗𝑔𝑔∗
𝑑𝑑𝑡𝑡
1000

i - sample
a(i) - ith sample of original amplitude trace.
g - exponential gain constant.
dt - sample rate.
b(i) - ith sample of gain recovered trace.



Wavlength Calulation for Rule of Thumb. --- wavelength of the highest frequency of interest in the model should be resolved by at least 10 cells (Yee Cells)

λ =  c / (fm * sqrt(Ԑr))                                    c - speed of light (meters), fm - highest frequency of interest(Hz) [ fm = 3 * f],

Ԑr - relative permittivity of medium, λ - wavelength (m)

∆L = λ/10                                  rule of thumb for spatial step (make ∆x = ∆y = ∆z = ∆L) V = [ c / Sqrt(Ԑr) ] * 1e-9     meters/nanosec tw = 1.3* (2*depth)/velocity)

λ f fm c Ԑr Material ∆L
Velocity

in medium
Relative 

Permittivity C

m Mhz Hz m/s m/ns Ԑr m/s

0.024845 9.00E+08 2.7E+09 3.00E+08 20 wet sand 0.002485 0.0671 20 3.00E+08

0.012423 9.00E+08 2.7E+09 3.00E+08 80 fresh water 0.001242 0.0335 80 3.00E+08

0.04969 9.00E+08 2.7E+09 3.00E+08 5 dry_sand_max 0.004969 0.1342 5 3.00E+08

0.06415 9.00E+08 2.7E+09 3.00E+08 3 dry_sand_min 0.006415 0.1732 3 3.00E+08

0.017568 9.00E+08 2.7E+09 3.00E+08 40 clay_max 0.001757 0.0474 40 3.00E+08

0.04969 9.00E+08 2.7E+09 3.00E+08 5 clay_min 0.004969 0.1342 5 3.00E+08

0.045361 9.00E+08 2.7E+09 3.00E+08 6 concrete 0.004536 0.1225 6 3.00E+08

0.045361 9.00E+08 2.7E+09 3.00E+08 6 dry_salt_max 0.004536 0.1225 6 3.00E+08

0.04969 9.00E+08 2.7E+09 3.00E+08 5 dry_salt_min 0.004969 0.1342 5 3.00E+08

0.045361 9.00E+08 2.7E+09 3.00E+08 6 granite_max 0.004536 0.1225 6 3.00E+08

0.055556 9.00E+08 2.7E+09 3.00E+08 4 granite_min 0.005556 0.1500 4 3.00E+08

0.055556 9.00E+08 2.7E+09 3.00E+08 4 ice_max 0.005556 0.1500 4 3.00E+08

0.06415 9.00E+08 2.7E+09 3.00E+08 3 ice_min 0.006415 0.1732 3 3.00E+08

0.039284 9.00E+08 2.7E+09 3.00E+08 8 limestone_max 0.003928 0.1061 8 3.00E+08

0.055556 9.00E+08 2.7E+09 3.00E+08 4 limestone_min 0.005556 0.1500 4 3.00E+08

0.020286 9.00E+08 2.7E+09 3.00E+08 30 saturated_sand_max 0.002029 0.0548 30 3.00E+08

0.024845 9.00E+08 2.7E+09 3.00E+08 20 saturated_sand_min 0.002485 0.0671 20 3.00E+08

0.111111 9.00E+08 2.7E+09 3.00E+08 1 free_space 0.011111 0.3000 1 3.00E+08

0.037037 9.00E+08 2.7E+09 3.00E+08 9 moist_sand 0.003704 0.1000 9 3.00E+08

0.041996 9.00E+08 2.7E+09 3.00E+08 7 0.0042 0.1134 7 3.00E+08
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