Efforts and Lessons Learned in Making the Morehead State University's 21-m Ground Station Operational for NASA lunar missions support

Timothy Pham^[1], Ben Malphrus^[2], Jeff Kruth^[2], E. Jay Wyatt^[1], Chloe Hart^[2], Emily Mattle^[2]

^[1] Jet Propulsion Laboratory, California Institute of Technology, California, United States ^[2] Morehead State University, Kentucky, United States

Jet Propulsion Laboratory California Institute of Technology

Content

- Introduction to Morehead 21-m ground station
- Mission drivers for system upgrade
- System architecture
- Throughout testing approach
 - Station internal tests
 - Performance characterization with spacecraft tests
 - Ground data system tests with data delivery to missions
 - Flight/ground end to end tests
- Lessons learned
- Summary

Introduction to Morehead Station

- Located at Morehead State University, Morehead, Kentucky, US
- Built in 2005 in support of LEO Cubesats and educational space research
- Upgraded for near Earth and deep space communications with Artemis 1 cubesats
 - Implementation started 2015; Operational in 2021
 - Full telemetry, tracking and command (TTC) capabilities
 - Primarily at X-band (8 GHz) as required for Artemis Cubesat support
 - S-band (2 GHz) capable, with feed switching

Morehead antenna (21-m

Jet Propulsion Laboratory California Institute of Technology

Lunar IceCube

DSN antennas (34-m/70-m)

Mission Drivers

Project Description and Objectives Demonstrate a cost-effective process for expanding DSN capabilities by utilizing non-NASA assets to provide communication and navigation services to Cubesat missions to the Moon and inner solar system, thereby enabling interplanetary research with small spacecraft platforms DSS-17's operational philosophy: "A Class-D Ground Station Supporting Class D Interplanetary CubeSats"	Lunar IceCube Lunar H-map NEO Scout
 Technical Approach Develop and implement a strategy to transfer Deep Space Network (DSN) equipment, processes and protocols to the MSU 21 m antenna system to enable integration into the DSN as an auxiliary station to support small spacecraft missions Implement deep space communications, tracking and navigation techniques as well as adoption of CCSDS standards Implement systems upgrades, conduct tests/demonstrations, and transition to an operational capability 	Morehead DSN antenna DSN antenna DSN antenna DSN antenna DSN antenna Mission Operation Center
 Benefits Serves as a test-case for other non-NASA ground stations to provide auxiliary deep space navigation and tracking support for interplanetary small spacecraft missions Serves as an Experimental Station for Advanced DSN Communications Experiments Serves as a DSN node, transparent to missions being supported 	Targets Full DSN compatibility Scheduled by DSN Support CCSDS-SLE DSN Tracking and Ranging Support Lunar, NEA, Lagrange point missions

Implementation Objectives

- Upgrade MSU 21-m antenna to support Lunar IceCube and other EM-1 Cubesats
 - X-band operations
 - Deep space and near Earth
 - Full TTC functions
 - 3 kW power amplifier
 - Deep space specialization
 - Highly efficient FEC (e.g., turbo code, LDPC)
 - Pseudo-noise/sequential ranging
 - Interoperability with DSN and CCSDS compliant

Jet Propulsion Laboratory California Institute of Technology

5

System Attributes

- Minimize implementation cost
 - Leverage on DSN-developed equipment
 - Specialized deep space signal processing for telemetry, ranging and commanding
 - Adapt the already-built equipment to only necessary functions
 - Implement rest of system with COTS equipment
 - With new and surplus components
- Adopt common user interfaces
 - Data delivery at JPL, as with other DSN antennas
- Create opportunity for student-developed projects
 - Station monitor & control
 - System integration and testing
 - Equipment operations

Jet Propulsion Laboratory California Institute of Technology

DSN Equipment

Hydrogen MASER

System Architecture

Deep Space Operation Center- JPL Mission Control

System Performance

Performance Measure	Pre-Upgrade	Post-Upgrade
X-Band Frequency Range	7.0 – 7.8 GHz	7.0 – 8.5 GHz
LNA Temperature	70 K	< 20 K
System Noise Temperature	215 K	<100 K
Antenna Gain	62 dBi (@7.7 GHz)	62.7 dBi (@8.4 GHz)
System Noise Spectral Density	-175 dBm/Hz	<-178 dBm/Hz
G/T at 5° Elevation	37.5 dB/K	40.4 dB/K
Time Standard	GPS (40 ns)	Hydrogen maser (1 ns/day)
EIRP	N/A	93.7 dBW
HPBW	0.124 deg	0.115 deg
CCSDS Compliance	N/A	Yes
Forward Error Coding	Reed Solomon/Convolutional	Reed Solomon/Convolutional, Turbo, Low Density Parity Check
Radiometric	Angle, Doppler	Angle, Doppler, Ranging

Incremental Test Approach

- 1. Station internal tests
- 2. Spacecraft shadow tracks
- 3. Simulated space link tests
- 4. Ground data system tests

Station Internal Tests

- Initial checkout, post installation of Exciter and Receiver, to validate signal processing
 - Exciter-to-Receiver loopback via 300 MHz IF
 - Exciter-to-Receiver loopback with built-in Test Translator (emulating spacecraft) at 8 GHz RF Validate integrity of ranging signal generation and reception (ranging calibration)
 - Validated integrity of command signal generation

Spacecraft Shadow Tracks

- Riding on normal DSN passes without impacting missions
 - With various X-band deep space missions, e.g., STEREO-A, Osiris REX, Hayabusa 2, Lucy, DART
 - No near Earth X-band mission currently operational and tracked by the DSN
 - Telemetry validation
 - Validated key antenna Gain/Temp (G/T) performance
 - Comparison of telemetry and carrier SNRs received at DSN and MSU antennas
 - 10 dB in expected G/T difference between two antennas observed
 - Ranging validation
 - Validated ranging functions of MSU downlink via 3-way ranging with STEREO-A, DART
 - Uplink ranging signal transmitted by DSN antenna in 3-way mode
 - 2-way ranging at Morehead not done due to lack of mission support for Morehead uplink and spectrum license issue in deep space frequency band
 - Command validation
 - Not achieved because requiring missions willingness to support MSU uplink

10 dB difference

between 21-m

MSU (DSS-17)

and 34-m DSN

antenna (DSS-

in SNR

24), as

expected

observed

Jet Propulsion Laboratory California Institute of Technology

DSS-17 Ranging Resultsprecision within +/-1 range unit (0.94 ns). Implies 1 meter accuracy ranging at the Moon

Simulated Space Link Tests

- Simulated space link condition via local air link between antenna and signal processing site
 - Use two additional test horn antennas, and other test equipment, to emulate spacecraft transmit/receive antenna
 - RF signal travels across 1 km air link between Exciter/Receiver and the antenna
 - Command data test
 - LIC MOC -> DSS-17 -> air link -> test feed -> LIC spacecraft
 - Telemetry data test
 - LIC spacecraft -> test feed -> air link -> DSS-17 -> receiver -> LIC MOC
 - Ranging (2-way) test
 - DSS-17 Exciter & Transmitter -> air link -> test feed -> DSS 17 Receiver

Ground Data System Tests

- GDS testing with Lunar IceCube, HMAP, CAPSTONE, CuSP, NEAScout
 - Verify data flow between Mission Operation Centers and MSU ground station
 - Telemetry & Command data with standard CCSDS Space Link Extension (SLE) interfaces
 - Tracking data with DSN specific interface
 - Workaround with generation of simulated spacecraft data
 - Lack of equipment to emulate spacecraft telemetry data is mitigated by use of SDRbased recorder/playback of pre-recorded IF samples of test signal waveform
 - Successful for most data rates but a few low data rate configurations had problem with data not being decoded
 - Saturation issue due to higher bit/symbol SNR?
- End-to-end test with spacecraft in development
 - Lunar IceCube done with actual LIC flight system since Morehead also responsible for LIC
 - Also done via local air link

Flight & Ground Systems End-to-End Tests

- End-to-end test involved Lunar Ice Cube spacecraft, ground station and Mission Operation Control
 - Test done with actual LIC flight system since MSU is also responsible for LIC development

Jet Propulsion Laboratory California Institute of Technology

Lessons Learned

- Incremental test approach, from a small portion to the entire system, helps:
 - Building confidence on system operation
 - Providing training opportunity to operation team
- Operational team was able to successfully transfer knowledge across multiple generations of students
 - Graduating students willing to share & teach. New students eager to learn
 - Converting key students to operation staff upon their graduation helps solidifying operational knowledge; thus, ensure mission success
- Making an operational ground station requires much dedication and resources
 - Strong project management and dedicated key technical staff
 - Funding resource to develop and maintain operational capabilities

Summary

- Implementation of ground station at Morehead State University
 - Supporting Artemis 1 Cubesat missions, at X-band
- A hybrid architecture
 - Combining DSN and COTS equipment
 - Common interfaces for missions that use both DSN and Morehead
- Incremental test approach builds up confidence of system operations from smaller segment to end-to-end system
- System is now ready to support Artemis 1 Cubesats, to be launched in 2022

