A Framework for Digital Data Quality Assessment in Digital Biomarker Research

Hui Zhang, Regan Giesting, Leah Miller, Guangchen Ruan, Neel Patel, Ju Ji, Tianran Zhang and Yi Lin Yang (zhang_hui@lilly.com)

DH R&D, Digital Health, Eli Lilly & Co.

ALLDATA 2023, April, Venice, Italy

OUTLINE

- Data Challenges in Connected Clinical Trials •
- Wearable Device Data for Digital Measure Development
- **Digital Data Quality**
 - Non-wear Detection
 - Data Model for Quality \bullet
 - **Data Quality Outcome Reporting Tool** ٠
- Deriving Digital Measures from High Quality Sensor Data
- Conclusion & Future Work

CCT & KEY CHALLENGES

WHAT IS CCT ?	<u>Connected Clinical Trials</u> use digital technologies to enable real time connection with conser- patients, to capture clinically meaningful signals via connected devices/apps and wearable se enable optimized clinical trial design, execution, and data.
	CCT will develop science and technology that serve as the foundation to precision and person medicine and enable direct connections with patients.

- Unique challenges in connected clinical trials implementing wearable devices
 - Handling big data
 - High frequency wearable sensor data, patient reported outcomes, etc. •

Delivering good data

- Data collected in free-living environment ٠
- Scanning invalid data points, removing noise, identifying useful portions of data for dBM development •
- Accurate ground truth data is also one essential element of good data •

Reusing, reproducing and publishing digital assets

- A digital data cloud \bullet
- Accessing data from anywhere ٠
- Slicing, aggregating, and sharing digital data •

nted ensors to

onalized

TYPICAL DIGITAL DATA SETS

Common data collected in connected clinical trials:

Derived Compliance and Quality Data

DATA QUALITY ASSESSMENT OVERVIEW

SIGNAL DATA QUALITY METRICS

Sampling Frequency: Preconfigured average number of samples obtained in one second, or the resolution of the data in dBM.

Valid Range:

- **Numerical Values**: minimum and maximum values that can be measured (ex: sensor signals)
- **Enumerated Variables** : a list of predefined categorical values (ex: sleep classifications)

Invalid Value / Error Code: Specific invalid values to indicate different statuses of malfunctioning in devices, in addition to the provided valid ranges.

		Channel	Description	Units	Min	Max	Invalid	Sampling
					Value	Value	Value	Frequency (Hz)
		$accel_x$	Accelerometer X Vector	gravity/1024	-32768	32767	None	50
		accely	Accelerometer Y Vector	gravity/1024	-32768	32767	None	50
		$accel_{z}$	Accelerometer Z Vector	gravity/1024	-32768	32767	None	50
Numerical	$ \rightarrow $	ec	ECG signal	μV	-10000	10000	32767	125
		st	Step count	Steps	0	65535	None	1
		hr	Heart rate	beats/min	30	200	0	0.25
		re	Respiration rate	beats/min	4	42	0	0.25
		po	Posture	Enum	0	11	5	1
			• Laying Down = 0					
Enumerated -			• Standing = 2					
	$ \rightarrow $		• Walking = 3					
			• Running = 4					
			• Unknown = 5					
			• Leaning = 11					

SIGNAL DATA QUALITY ASSESSMENT

- Valid signals can mix with invalid signals in the data collection and how they differ when plotted.
- **Correctly** vs incorrectly worn \rightarrow useful data vs useless data ۲

Filtering out invalid values with a valid value range results in valid data coverage, or the ۲ coverage of valid data points.

NON-WEAR DETECTION

- Detect moments when a device is not correctly worn.
- Utilize *Biobank* to detect non-wear:
 - Estimate accelerometer non-wear based on the standard deviation and the value range of the raw data from *each* accelerometer axis.
 - 30-second epoch classification in larger windows
 - Stationary periods used to define whether a window is stationary or not

DATA QUALITY MODEL

Epoch Level

Generated form Biobank's 30 second epoch classification

Subj	Timestamp	Non-
		wear
1002	2021-09-15	false
	19:15:00	
	•••	
1005	2021-10-18	true
	09:45:30	

Hourly Level

Keep only correctly worn epochs, resulting in hourly data coverage derived from number of compliant minutes

Subj	Date	Hr	Cvge.
			(min.)
1002	2021-	19	45
	09-15		
			•••
1005	2021-	09	60
	10-18		

Daily / Intraday Window Level Summary coverage derived from applying time filters to hourly quality table

Subj	Date	Cvge. (min.)	Window
1002	2021-	1440	pa_daily
	09-15		
•••	•••	•••	•••
1005	2021-	720	sleep_night
	10-18		

DATA QUALITY MODEL

Extended Quality with External Mappings

Additional data quality mapping comes as additional data becomes available, including visit or site information for patients.

Added mappings allow for thresholds/filters to be applied for data aggregation. Ex: Minimum of 20 hours of data for a day to be qualified as a valid day

Site	Subj.	Date	Trial Day Index	Visit	Cvge.	Wind
					(min.)	
101	1002	2021-09-15	1	0	1440	pa_
				(PreTreatment)		
	•••	•••	•••	•••		
103	1005	2021-10-18	32	4	720	slee

DATA VISUALIZATION – MISSING DATA & OUTLIERS

Identifying outliers in Heart Rate data:

Heart Rate valid values range between 30 to 200

Visualize the data to easily identify:

- Missing data a)
- Sensor signal quality b)
- Numeric representation of the data c)
- d) Interpreting data quality on a color scale

DATA VISUALIZATION – DATA QUALITY MAP

Sensor signals can be visualized in order to examine data quality patterns & analysis:

Visualize the data to easily identify:

- a) Minute by Minute Quality Ex: Individual patient, one day
- b) Hour by Hour QualityEx: Individual patient, all days
- c) Day by Day Quality Ex: Population level
- d) Compliant Days Throughout Trial Ex: Individual patient, all days
- e) Identify & Align Data Issues
 Ex: Derive potential wearing patterns and/or device issues

DATA VISUALIZATION – COMPLIANCE REPORTING

Study Level Compliance

CPMP ISA Compliance Report

ISA Information

ISA: BP02

Total Patients: 131

Date: 09/22/2022

Compliance Table

Compliance is calculated for a patient as % of days with >= 20 hours of sensor data. Each patient is expected to have 66 days. Below, a patient is categorized as compliant if they have at least 50% of those 66 days are meet this criteria.

Compliance	# Patients	% of Patients
Patients with >= 50% of days compliant	75	57.25 %
Patients with < 50% of days compliant	56	42.75 %

Site Based Compliance

Compliance is % of days the patient has completed thus far with >= 20 hours of sensor data.

Site	# Patients	Average Compliance
148	3	90.91 %
138	3	85.86 %
102	3	85.35 %
123	2	84.85 %
128	2	68.18 %
132	2	65.15 %
134	1	65.15 %
110	7	60.82 %
106	8	60.23 %
122	21	59.52 %
103	7	59.09 %
114	12	58.33 %
108	5	57.88 %
107	19	55.58 %
119	2	49.24 %
117	2	47.73 %
147	2	45.45 %
149	1	40.91 %
111	1	39.39 %
118	6	31.82 %
142	19	20.65 %
109	3	9.6 %

Site Level Compliance

CPMP Site Compliance Report

Site Information

Site: 106

Completed: 36 Patients In Progress : 4 Patients Date: 09/20/2022

Compliance Table for Completed Patients

Compliance is calculated for a patient as % of days with >= 20 hours of sensor data. Each patient is expected to have 66 days. Below, a patient is categorized as compliant if they have at least 50% of those 66 days are meet this criteria.

Compliance	# Patients	% of Patients
Patients with >= 50% of days compliant	23	63.89 %
Patients with < 50% of days compliant	13	36.11 %

In Progress Patients

Compliance is % of days the patient has completed thus far with >= 20 hours of sensor data

Subject	ISA	Current Visit	Compliance	Issue Identified
13220	NP02	V6	43.75 %	
13767	NP02	V6	52.94 %	
13817	NP02	V5	87.5 %	
13868	NP02	V4	60 %	

Patient Level Compliance

CPMP Patient Compliance Report

Patient Information

Subject: 12227 ISA: NP03 Site: 122 Date: 09/20/2022

Compliance Table

A compliant day is classified as a day having >= 20 hours of sensor data.

Time Period	Date Range	Number of Compliant Days	Compliance Percentage
PRE-TREATMENT	07/11/2021-07/25/2021	10	66.67%
VISIT 4	07/26/2021-08/09/2021	15	100%
VISIT 5	08/10/2021-08/22/2021	12	92.31%
VISIT 6	08/23/2021-09/06/2021	15	100%
VISIT 7	09/07/2021-09/19/2021	13	100%

Hourly Compliance

Trial Day

SLEEP DIGITAL MEASURE FROM HIGH QUALITY SENSOR DATA

Intervention: Change of Hourly 'sleep' Feature from Baseline on 24 Hours

Derived hourly sleep digital measure demonstrates drug efficacy in treatment phase

Three treatment arms all show decreased daytime sleep change from baseline • (more active) compared to placebo cohort

PHYSICAL ACTIVITY DIGITAL MEASURE FROM HIGH **QUALITY SENSOR DATA**

Derived hourly physical activity (magnitude counts) digital measure demonstrates drug efficacy in treatment phase

Three treatment arms all show **increased** daytime physical activity change from • baseline (more active) compared to placebo cohort

CADENCE FEATURE FROM DERIVED STEPS

Individual steps can be derived from raw accelerometer data Cadence feature can in turn be derived by averaging across all bouts' cadence

GAIT RATE FEATURE FROM DERIVED STEPS

Individual steps can be derived from raw accelerometer data For each bout we can derive mean step rate Gait rate feature is then derived from averaging all bouts' mean step rate

CONCLUSION & FUTURE WORK

- Continue to define and implement the fundamentals of data quality into the digital data quality framework and platform
- Generate automated compliance reports, customizable visualizations, and real-time quality metrics
- Future directions include the use of visual mining and data mining technologies to help • identify data quality in a novel way to facilitate data quality assessment

Thank You!

