
On Factorizing Million Scale
Non-Negative Matrices using

Compressed Structures
Sudhindra Gopal Krishna, Aditya Narasimhan, Sridhar Radhakrishnan, and

Chandra N. Sekharan
Presenter: Sudhindra Gopal Krishna

sudhi@ou.edu
School of Computer Science, The University of Oklahoma, Norman, OK

1

Presenter’s Bio
• Sudhindra Gopal Krishna is a final year Ph.D. Candidate in the School of Computer

Science at the University of Oklahoma.
• His research foundation is based on democratizing resources to research via storing

the data in a small footprint and performing required operations on the sorted data
without having to extract them completely.

• Originally from Bengaluru, India, where he received Bachelor's Degree in
Computer Science from Visvesvaraya Technological University, and a Master of
Science in Computer Science from the University of Oklahoma, USA.

• Apart from his research and teaching at OU, he is engaged in outreach programs
and have worked with K-12 teachers in the state of Oklahoma, to provide Computer
Science education to High-School students under CodeSooner program, led by Dr.
Sridhar Radhakrishnan.

2

Contents

• Introduction
• Background
• Matrix Operations
• Proposed Method
• Heuristic Approach
• Evaluation
• Conclusion and Future Work

3

Introduction
• Matrix factorization is the process of decomposing a matrix into multiple matrices

in order to simplify computations or extract meaningful information.
• Matrix factorization is a fundamental technique used in many areas of

mathematics and computer science, including linear algebra, signal processing,
and machine learning.
• Types: Some common types of matrix factorization include:

• Singular Value Decomposition (SVD)
• Principal Component Analysis (PCA)
• Non-negative Matrix Factorization (NMF)
• Latent Dirichlet Allocation (LDA)

• Applications: Some common applications of matrix factorization include image
and video processing, collaborative filtering, and data compression.

4

Non-Negative Matrix Factorization

• Non-negative matrix factorization (NMF) is a type of matrix factorization where
the matrices are constrained to contain only non-negative elements.
• NMF is often used as a tool for dimensionality reduction and feature extraction in

machine learning applications, since it can produce interpretable and sparse
representations of data.
• Some common applications of NMF include topic modeling, image and video

processing, and text mining.

5

NMF Constraints

• W and H:
• W is a matrix of size n x k, where n is the number of rows in V and k is the rank of the

factorization.
• H is a matrix of size k x m, where m is the number of columns in V and k is the rank of the

factorization.
• W and H are both non-negative matrices with all entries greater than or equal to zero.

• Frobenius norm:
• The Frobenius norm of a matrix M is defined as the square root of the sum of the squared

values of all the entries in M.
• The Frobenius norm is commonly used as a measure of the distance between two matrices.

6

NMF Algorithms

• Some of the well-known sequential algorithms to solve the non-negative
factorization are,
• Multiplicative Update Algorithms
• Gradient Descent Algorithms and
• Alternating Least Squares Algorithms

• In this paper, we will evaluate the Multiplicative Update Algorithm defined by Lee
& Seung

7

Multiplicative Update Algorithm

𝐻 ←
𝐻

(𝑊!𝑉)(𝑊!𝑊𝐻)

𝑊 ←
𝑊

(𝑉𝐻!)(𝑊𝐻𝐻!)

8

NMF - Disadvantages of Lee and Seung's
Approach
• Although the NMF approach proposed by Lee and Seung is widely used and has

many benefits, there are also some disadvantages:
• Local optima: The iterative procedure used in Lee and Seung's algorithm can sometimes

converge to local optima rather than the global optimum.
• Initialization: The performance of Lee and Seung's algorithm can be sensitive to the initial

values of W and H.
• Overfitting: If the rank of the factorization is chosen to be too high, NMF can overfit the data

and capture noise rather than the underlying structure.
• Interpretability: The basis matrices obtained from NMF can be difficult to interpret,

particularly if the rank is chosen to be high.
• Memory: The memory required to multiply two matrices requires tremendous amount of

memory, as matrices are a 2-Dimensional data structure.

9

Solution

• In this paper, to solve the problem of memory requirement, we compress all
matrices (A, W, & H).
• All matrix operations required to obtain final W & H, are all performed by

partially deflating the data.
• To achieve this, in this paper we use Compressed Sparse Row (CSR), and

Compressed Binary Trees (CBT), as storage mechanisms.

10

Background

• Paatero and Tapper (1994) proposed positive matrix factorization.
• Lee and Seung's NMF was inspired by Paatero and Tapper's work.
• Gonzalez and Zhang (2005) proposed an alteration to the multiplicative update

algorithm.
• Lin (2007) proposed a modification that improved convergence.

11

Positive Matrix Factorization (PMF)

• Proposed by Paatero and Tapper in 1994.
• A matrix factorization method that restricts the factors to be non-negative.
• Inspired Lee and Seung's work on NMF.

12

Alternatives to Lee and Seung's NMF

• Gonzalez and Zhang (2005) proposed an alteration to the multiplicative update
algorithm.
• Lin (2007) proposed a modification that improved convergence but at the cost of

more operations per iteration.

13

Efficient Storage of Large Sparse Matrices

• The cost of storing zeros in large sparse matrices can be expensive and redundant.
• The sparsity of a matrix is defined as the ratio of the number of non-zero elements

to the number of all possible elements.
• In this paper, we propose using our novel CBT algorithm and existing structures

like CSR to efficiently store large sparse matrices.

14

Matrix Operations

• To obtain W and H, we need to perform several matrix operations such as,
• Multiple Matrix Multiplication
• Element-Wise Matrix Multiplication
• Element-Wise Matrix Addition
• Element-Wise Matrix Subtraction (Frobenius Norm)
• Element-Wise Matrix Division
• Matrix Transpose

• All operations should be performed on the compressed structure by the means of
partial deflation

15

Element-Wise Matrix Operations

16

Matrix Transpose

17

Multiple Matrix Multiplication

18

Evaluating Multiple Matrix Multiplication

19

For a Million-By-Million Matrix with varying sparsity

Heuristics for Faster Convergence
• One of the drawbacks of the multiplicative update approach is the convergence time and

the iterations it takes to find an optimal solution.
• One way to make the algorithm faster is to reduce the number of non-zero values in the

input matrix.
• A heuristic approach to reduce the number of non-zero values is to make specific values

zero based on a threshold number of index positions per row.
• The decision to remove values at certain index positions will be based on two reasons:

reducing the size of the compressed CBT structure and removing noise in the input data.
• This may lead to more loss, but the threshold will dictate the metric of the percentage of

loss added to the already lossy factorization approach.
• The heuristic approach will not be optimal but will lead to reduced resource utilization.
• Space is reduced in the already compressed structure, and time to query the smaller CBT

structure is reduced.

20

Evaluation

21

Evolution of W & H

22

Conclusion and Future Work

• Million-scale matrix can be factorized directly on the compressed structure.
• Intermediate result can be eliminated using multiple matrix operations.
• Introduced element-wise matrix multiplication, division, subtraction, addition, and

sequential multiple matrix multiplications.
• Traversing through the matrix in pattern can avoid an explicit transpose operation

during matrix factorization.
• Heuristic relationship between inner rank and sparsity of factor matrices.
• Lower rank leads to smaller factors W and H.
• Future work: expand computation to ALS and GD, and Binary Matrix

Factorization using compression algorithms.

23

Thank you
Questions?

24

