On Factorizing Million Scale Non-Negative Matrices using Compressed Structures

Sudhindra Gopal Krishna, Aditya Narasimhan, Sridhar Radhakrishnan, and Chandra N. Sekharan
Presenter: Sudhindra Gopal Krishna
sudhi@ou.edu
School of Computer Science, The University of Oklahoma, Norman, OK

Presenter's Bio

- Sudhindra Gopal Krishna is a final year Ph.D. Candidate in the School of Computer Science at the University of Oklahoma.
- His research foundation is based on democratizing resources to research via storing the data in a small footprint and performing required operations on the sorted data without having to extract them completely.
- Originally from Bengaluru, India, where he received Bachelor's Degree in Computer Science from Visvesvaraya Technological University, and a Master of Science in Computer Science from the University of Oklahoma, USA.
- Apart from his research and teaching at OU, he is engaged in outreach programs and have worked with K-12 teachers in the state of Oklahoma, to provide Computer Science education to High-School students under CodeSooner program, led by Dr.
 Sridhar Radhakrishnan.

Contents

- Introduction
- Background
- Matrix Operations
- Proposed Method
- Heuristic Approach
- Evaluation
- Conclusion and Future Work

Introduction

- Matrix factorization is the process of decomposing a matrix into multiple matrices in order to simplify computations or extract meaningful information.
- Matrix factorization is a fundamental technique used in many areas of mathematics and computer science, including linear algebra, signal processing, and machine learning.
- Types: Some common types of matrix factorization include:
- Singular Value Decomposition (SVD)
- Principal Component Analysis (PCA)
- Non-negative Matrix Factorization (NMF)
- Latent Dirichlet Allocation (LDA)
- Applications: Some common applications of matrix factorization include image and video processing, collaborative filtering, and data compression.

Non-Negative Matrix Factorization

- Non-negative matrix factorization (NMF) is a type of matrix factorization where the matrices are constrained to contain only non-negative elements.
- NMF is often used as a tool for dimensionality reduction and feature extraction in machine learning applications, since it can produce interpretable and sparse representations of data.
- Some common applications of NMF include topic modeling, image and video processing, and text mining.

A

W

H

NMF Constraints

- W and H :
- W is a matrix of size $\mathrm{n} x \mathrm{k}$, where n is the number of rows in V and k is the rank of the factorization.
- H is a matrix of size kx m , where m is the number of columns in V and k is the rank of the factorization.
- W and H are both non-negative matrices with all entries greater than or equal to zero.
- Frobenius norm:
- The Frobenius norm of a matrix M is defined as the square root of the sum of the squared values of all the entries in M.
- The Frobenius norm is commonly used as a measure of the distance between two matrices.

NMF Algorithms

- Some of the well-known sequential algorithms to solve the non-negative factorization are,
- Multiplicative Update Algorithms
- Gradient Descent Algorithms and
- Alternating Least Squares Algorithms
- In this paper, we will evaluate the Multiplicative Update Algorithm defined by Lee \& Seung

Multiplicative Update Algorithm

$$
\begin{aligned}
& H \leftarrow \frac{H}{\left(W^{T} V\right)\left(W^{T} W H\right)} \\
& W \leftarrow \frac{W}{\left(V H^{T}\right)\left(W H H^{T}\right)}
\end{aligned}
$$

[^0]
NMF - Disadvantages of Lee and Seung's

 Approach- Although the NMF approach proposed by Lee and Seung is widely used and has many benefits, there are also some disadvantages:
- Local optima: The iterative procedure used in Lee and Seung's algorithm can sometimes converge to local optima rather than the global optimum.
- Initialization: The performance of Lee and Seung's algorithm can be sensitive to the initial values of W and H .
- Overfitting: If the rank of the factorization is chosen to be too high, NMF can overfit the data and capture noise rather than the underlying structure.
- Interpretability: The basis matrices obtained from NMF can be difficult to interpret, particularly if the rank is chosen to be high.
- Memory: The memory required to multiply two matrices requires tremendous amount of memory, as matrices are a 2-Dimensional data structure.

Solution

- In this paper, to solve the problem of memory requirement, we compress all matrices (A, W, \& H).
- All matrix operations required to obtain final $\mathrm{W} \& \mathrm{H}$, are all performed by partially deflating the data.
- To achieve this, in this paper we use Compressed Sparse Row (CSR), and Compressed Binary Trees (CBT), as storage mechanisms.

Background

- Paatero and Tapper (1994) proposed positive matrix factorization.
- Lee and Seung's NMF was inspired by Paatero and Tapper's work.
- Gonzalez and Zhang (2005) proposed an alteration to the multiplicative update algorithm.
- Lin (2007) proposed a modification that improved convergence.

Positive Matrix Factorization (PMF)

- Proposed by Paatero and Tapper in 1994.
- A matrix factorization method that restricts the factors to be non-negative.
- Inspired Lee and Seung's work on NMF.

Alternatives to Lee and Seung's NMF

- Gonzalez and Zhang (2005) proposed an alteration to the multiplicative update algorithm.
- Lin (2007) proposed a modification that improved convergence but at the cost of more operations per iteration.

Efficient Storage of Large Sparse Matrices

- The cost of storing zeros in large sparse matrices can be expensive and redundant.
- The sparsity of a matrix is defined as the ratio of the number of non-zero elements to the number of all possible elements.
- In this paper, we propose using our novel CBT algorithm and existing structures like CSR to efficiently store large sparse matrices.

Matrix Operations

- To obtain W and H , we need to perform several matrix operations such as,
- Multiple Matrix Multiplication
- Element-Wise Matrix Multiplication
- Element-Wise Matrix Addition
- Element-Wise Matrix Subtraction (Frobenius Norm)
- Element-Wise Matrix Division
- Matrix Transpose
- All operations should be performed on the compressed structure by the means of partial deflation

Element-Wise Matrix Operations

```
Input: Matrix A, Matrix B, Operation Op
Output: resultan_matrix C
1 if A.rowSize != B.rowSize or A.colSize !=
    B.colSize then
2 Error: Matrix dimensions should be the
            same for both the matrices
3 for i in numberofRows do
    if A[i].rows == O and B[i].rows == 0 then
        C[i] = 0
        continue to the next row
        else if }A[i]==0\mathrm{ then
        C[i] = B[i]
            continue to the next row
        else if }B[i]==0\mathrm{ then
            C[i] = A[i]
            continue to the next row
        for aIndex in A[i] do
            for bIndex in B[i] do
            C[i][j] = A[i][j] "Op" B[i][j]
            Where "Op" = "+ or - or .* or ./"
return C
```


Matrix Transpose

$$
\left.\begin{array}{c}
{\left[\begin{array}{ccc}
A & \\
\mathrm{a} & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h} & \mathrm{i}
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]} \\
{\left[\begin{array}{|c|c|c|c}
\mathrm{a} 1+\mathrm{d} 4+\mathrm{g} 7 & \mathrm{a} 2+\mathrm{d} 5+\mathrm{g} 8 & \mathrm{a} 3+\mathrm{d} 6+\mathrm{g} 9 \\
\hdashline \mathrm{~b} 1+\mathrm{e} 4+\mathrm{h} 7 & \mathrm{~b} 2+\mathrm{e} 5+\mathrm{h} 8 & \mathrm{~b} 3+\mathrm{e} 6+\mathrm{h} 9 \\
\hdashline \mathrm{c} 1+\mathrm{f} 4+\mathrm{i} 7 & \mathrm{c} 2+\mathrm{f} 5+\mathrm{i} 8 & \mathrm{c} 3+\mathrm{f} 6+\mathrm{i} 9
\end{array}\right.}
\end{array}\right] .
$$

Fig. 1: Shows the working of $A^{T} \times B$, by storing the result in a pattern to eliminate the need of transposing the actual matrix.

$$
\begin{gather*}
\left.A \times B^{T}=\begin{array}{c}
0 \\
0 \\
1 \\
2 \\
3
\end{array}\left[\begin{array}{llll}
5 & 1 & 2 & 3 \\
3 & 0 & 0 & 3 \\
0 & 0 & 2 & 5 \\
0 & 1 & 2 & 0
\end{array}\right] \times \begin{array}{cccc}
0 & 1 & 2 & 3 \\
0 \\
1 \\
2 \\
3
\end{array} \begin{array}{cc}
2 & 4 \\
3 & 1 \\
2 & 0 \\
0 & 1 \\
0 & 1 \\
1 & 0 \\
3 & 0 \\
2 & 0
\end{array}\right] \\
\Rightarrow \begin{array}{c}
r_{0}(A) \rightarrow \\
c_{0}(B) \rightarrow
\end{array} \\
\Rightarrow\left(\begin{array}{c}
5 \\
\times \\
2
\end{array}\right)+\left(\begin{array}{c}
5 \\
\times \\
4
\end{array}\right)+\left(\begin{array}{c}
5 \\
\times \\
3
\end{array}\right)+\left(\begin{array}{c}
5 \\
\times \\
1
\end{array}\right) \tag{2}\\
\end{gather*}
$$

Equation 2, shows an example of $A \times B^{T}$, where the partial resultant of column $c_{0}[C]$, is obtained after multiplying the first row $r_{0}[A]$ of A , and virtually transposed the first column of B , in this case it is still $r_{0}[B]$.

Multiple Matrix Multiplication

Evaluating Multiple Matrix Multiplication

For a Million-By-Million Matrix with varying sparsity

Heuristics for Faster Convergence

- One of the drawbacks of the multiplicative update approach is the convergence time and the iterations it takes to find an optimal solution.
- One way to make the algorithm faster is to reduce the number of non-zero values in the input matrix.
- A heuristic approach to reduce the number of non-zero values is to make specific values zero based on a threshold number of index positions per row.
- The decision to remove values at certain index positions will be based on two reasons: reducing the size of the compressed CBT structure and removing noise in the input data.
- This may lead to more loss, but the threshold will dictate the metric of the percentage of loss added to the already lossy factorization approach.
- The heuristic approach will not be optimal but will lead to reduced resource utilization.
- Space is reduced in the already compressed structure, and time to query the smaller CBT structure is reduced.

Evaluation

TABLE I: Shows the result of the factorization using $C B T$ and $C S R$ and the memory required to process the factors.

						$\mathbf{W} \times \mathbf{H}$		Avg Mem/Iter		
Matrix A	NNZ	Matrix Size	CBT	CSR	Inner Rank	NNZ	Matrix Size	Matrix	CBT	CSR
2688×2688	23,089	55.12 MB	217.36 KB	216.23 KB	448	216.58 KB	216.51 KB	73.5 MB	0.54 KB	0.67 MB
5376×5376	57,752	220.5 MB	547.53 KB	546.68 KB	255	513.87 KB	526.46 KB	241.41 MB	0.29 KB	30 MB
21504×21504	1,385,198	3.44 GB	12.7 MB	12.98 MB	512	12.65 MB	12.95 MB	3.6 GB	13.1 MB	150 MB
43008×43008	998,531	13.78 GB	9.45 MB	9.53 MB	670	9.1 MB	9.98 MB	14.21 GB	9.92 MB	87 MB
65536×65536	1,460,048	32 GB	14.23 MB	14.05 MB	665	13.45 MB	14.12 MB	32.64 GB	14.80 MB	200 MB

Evolution of W \& H

Conclusion and Future Work

- Million-scale matrix can be factorized directly on the compressed structure.
- Intermediate result can be eliminated using multiple matrix operations.
- Introduced element-wise matrix multiplication, division, subtraction, addition, and sequential multiple matrix multiplications.
- Traversing through the matrix in pattern can avoid an explicit transpose operation during matrix factorization.
- Heuristic relationship between inner rank and sparsity of factor matrices.
- Lower rank leads to smaller factors W and H .
- Future work: expand computation to ALS and GD, and Binary Matrix Factorization using compression algorithms.

\mathbb{Q}

Thank you

Questions?

[^0]: 1 begin
 $W=\operatorname{rand}(m, k)$ $H=\operatorname{rand}(k, n)$ for i : maxiter do
 $H \leftarrow H . *\left(W^{T} A\right) . /\left(W^{T} W H+10^{-9}\right)$ $W \leftarrow W \cdot *\left(A H^{T}\right) \cdot /\left(W H H^{T}+10^{-9}\right)$

 Figure 1. Multiplicative Update algorithm for $N M F$ using the Frobenius norm as a cost function

