
On Factorizing Million Scale 
Non-Negative Matrices using 

Compressed Structures
Sudhindra Gopal Krishna, Aditya Narasimhan, Sridhar Radhakrishnan, and 

Chandra N. Sekharan
Presenter: Sudhindra Gopal Krishna

sudhi@ou.edu
School of Computer Science, The  University of Oklahoma, Norman, OK 

1



Presenter’s Bio
• Sudhindra Gopal Krishna is a final year Ph.D. Candidate in the School of Computer 

Science at the University of Oklahoma.
• His research foundation is based on democratizing resources to research via storing 

the data in a small footprint and performing required operations on the sorted data 
without having to extract them completely. 

• Originally from Bengaluru, India, where he received Bachelor's Degree in 
Computer Science from Visvesvaraya Technological University, and a Master of 
Science in Computer Science from the University of Oklahoma, USA. 

• Apart from his research and teaching at OU, he is engaged in outreach programs 
and have worked with K-12 teachers in the state of Oklahoma, to provide Computer 
Science education to High-School students under CodeSooner program, led by Dr. 
Sridhar Radhakrishnan.

2



Contents

• Introduction
• Background
• Matrix Operations
• Proposed Method
• Heuristic Approach
• Evaluation
• Conclusion and Future Work

3



Introduction
• Matrix factorization is the process of decomposing a matrix into multiple matrices 

in order to simplify computations or extract meaningful information.
• Matrix factorization is a fundamental technique used in many areas of 

mathematics and computer science, including linear algebra, signal processing, 
and machine learning.
• Types: Some common types of matrix factorization include:

• Singular Value Decomposition (SVD)
• Principal Component Analysis (PCA)
• Non-negative Matrix Factorization (NMF)
• Latent Dirichlet Allocation (LDA)

• Applications: Some common applications of matrix factorization include image 
and video processing, collaborative filtering, and data compression.
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Non-Negative Matrix Factorization

• Non-negative matrix factorization (NMF) is a type of matrix factorization where 
the matrices are constrained to contain only non-negative elements.
• NMF is often used as a tool for dimensionality reduction and feature extraction in 

machine learning applications, since it can produce interpretable and sparse 
representations of data.
• Some common applications of NMF include topic modeling, image and video 

processing, and text mining.
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NMF Constraints

• W and H:
• W is a matrix of size n x k, where n is the number of rows in V and k is the rank of the 

factorization.
• H is a matrix of size k x m, where m is the number of columns in V and k is the rank of the 

factorization.
• W and H are both non-negative matrices with all entries greater than or equal to zero.

• Frobenius norm:
• The Frobenius norm of a matrix M is defined as the square root of the sum of the squared 

values of all the entries in M.
• The Frobenius norm is commonly used as a measure of the distance between two matrices.
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NMF Algorithms

• Some of the well-known sequential algorithms to solve the non-negative 
factorization are, 
• Multiplicative Update Algorithms
• Gradient Descent Algorithms and
• Alternating Least Squares Algorithms 

• In this paper, we will evaluate the Multiplicative Update Algorithm defined by Lee 
& Seung 
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Multiplicative Update Algorithm
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NMF - Disadvantages of Lee and Seung's 
Approach
• Although the NMF approach proposed by Lee and Seung is widely used and has 

many benefits, there are also some disadvantages:
• Local optima: The iterative procedure used in Lee and Seung's algorithm can sometimes 

converge to local optima rather than the global optimum.
• Initialization: The performance of Lee and Seung's algorithm can be sensitive to the initial 

values of W and H.
• Overfitting: If the rank of the factorization is chosen to be too high, NMF can overfit the data 

and capture noise rather than the underlying structure.
• Interpretability: The basis matrices obtained from NMF can be difficult to interpret, 

particularly if the rank is chosen to be high.
• Memory: The memory required to multiply two matrices requires tremendous amount of 

memory, as matrices are a 2-Dimensional data structure.
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Solution

• In this paper, to solve the problem of memory requirement, we compress all 
matrices (A, W, & H).
• All matrix operations required to obtain final W & H, are all performed by 

partially deflating the data.
• To achieve this, in this paper we use Compressed Sparse Row (CSR), and 

Compressed Binary Trees (CBT), as storage mechanisms.
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Background

• Paatero and Tapper (1994) proposed positive matrix factorization.
• Lee and Seung's NMF was inspired by Paatero and Tapper's work.
• Gonzalez and Zhang (2005) proposed an alteration to the multiplicative update 

algorithm.
• Lin (2007) proposed a modification that improved convergence.
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Positive Matrix Factorization (PMF)

• Proposed by Paatero and Tapper in 1994.
• A matrix factorization method that restricts the factors to be non-negative.
• Inspired Lee and Seung's work on NMF.
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Alternatives to Lee and Seung's NMF

• Gonzalez and Zhang (2005) proposed an alteration to the multiplicative update 
algorithm.
• Lin (2007) proposed a modification that improved convergence but at the cost of 

more operations per iteration.

13



Efficient Storage of Large Sparse Matrices

• The cost of storing zeros in large sparse matrices can be expensive and redundant.
• The sparsity of a matrix is defined as the ratio of the number of non-zero elements 

to the number of all possible elements.
• In this paper, we propose using our novel CBT algorithm and existing structures 

like CSR to efficiently store large sparse matrices.
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Matrix Operations 

• To obtain W and H, we need to perform several matrix operations such as,
• Multiple Matrix Multiplication
• Element-Wise Matrix Multiplication
• Element-Wise Matrix Addition
• Element-Wise Matrix Subtraction (Frobenius Norm)
• Element-Wise Matrix Division 
• Matrix Transpose

• All operations should be performed on the compressed structure by the means of 
partial deflation
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Element-Wise Matrix Operations
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Matrix Transpose
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Multiple Matrix Multiplication
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Evaluating Multiple Matrix Multiplication
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Heuristics for Faster Convergence
• One of the drawbacks of the multiplicative update approach is the convergence time and 

the iterations it takes to find an optimal solution.
• One way to make the algorithm faster is to reduce the number of non-zero values in the 

input matrix.
• A heuristic approach to reduce the number of non-zero values is to make specific values 

zero based on a threshold number of index positions per row.
• The decision to remove values at certain index positions will be based on two reasons: 

reducing the size of the compressed CBT structure and removing noise in the input data.
• This may lead to more loss, but the threshold will dictate the metric of the percentage of 

loss added to the already lossy factorization approach.
• The heuristic approach will not be optimal but will lead to reduced resource utilization.
• Space is reduced in the already compressed structure, and time to query the smaller CBT 

structure is reduced.
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Evaluation
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Evolution of W & H
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Conclusion and Future Work

• Million-scale matrix can be factorized directly on the compressed structure.
• Intermediate result can be eliminated using multiple matrix operations.
• Introduced element-wise matrix multiplication, division, subtraction, addition, and 

sequential multiple matrix multiplications.
• Traversing through the matrix in pattern can avoid an explicit transpose operation 

during matrix factorization.
• Heuristic relationship between inner rank and sparsity of factor matrices.
• Lower rank leads to smaller factors W and H.
• Future work: expand computation to ALS and GD, and Binary Matrix 

Factorization using compression algorithms.
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