
D i g i t a l W o r l d - N e x C o m m 2 0 2 3

Leveraging Collaborative
Metaprogramming for Sustainable

Innovation and Co-Creation

A P R I L , 2 0 2 3

H E R W I G M A N N A E R T



LEVERAGING METAPROGRAMMING

Overview

• Introduction

• On Evolvable Metaprogramming

• Co-Creating Software Applications

• Scaling Generative Programming

• Conclusion

Leveraging Collaborative Metaprogramming for Sustainable Innovation and Co-Creation



LEVERAGING METAPROGRAMMING

Overview

• Introduction

• About us and our goals

• On leverage effects

• On Evolvable Metaprogramming

• Co-Creating Software Applications

• Scaling Generative Programming

• Conclusion

Leveraging Collaborative Metaprogramming for Sustainable Innovation and Co-Creation



• Electronics engineer, PhD in computer vision

• Co-created Normalized Systems Theory on engineering and architecture of
evolvable software systems, i.e., enabling software to cope with change

• Books and papers (140 publications), and YouTube channel
• Human adoption

• Spin off company with 45 software engineers
• > 60 software engineers at customers / partners

• Software production
• Suite of code generators and tools
• Many software projects AND products, e.g.,

• Energy monitoring suite
• Privacy and security management suite

• Command & Control suite for medical drone transports

• Full professor on University of Antwerp, not an esteemed researcher

On myself, my colleagues, and our work



• We want to provide a theoretical framework and tools that enable the
creation of software systems with unseen levels of evolvability

• Able to cope with changing functional requirements and technologies

• Defeating the Law of Increasing Complexity by Manny Lehman

• We want to achieve a critical mass in software systems to prove this

• As all real engineers, we want to contribute to our society

Our mission is to contribute to society. It is always about making things better.

- Tim Minshall

On our goals



LEVERAGING METAPROGRAMMING

Overview

• Introduction

• About us and our goals

• On leverage effects

• On Evolvable Metaprogramming

• Co-Creating Software Applications

• Scaling Generative Programming

• Conclusion

Leveraging Collaborative Metaprogramming for Sustainable Innovation and Co-Creation



• The fundamental purpose of technology/engineering is to contribute to
human prosperity and well-being by inventing artifacts and techniques

• to increase productivity through leverage effects:
• Fishing: manual spear fishing net

• Transport: walking chariot car

• Digging: manual shovel excavator

• Computing: paper calculator computer

• Communicating: courier lettermessage

• to support and improve life in general:
• Treatments and medicines to cure patients

• Information systems to consolidate knowledge

On Technology and Engineering



• True realization of these leverage effects requires:
• Scalability of production:

• No huge efforts

• No scarce resources

• No rare capabilities

• Technical complexity of manufacturing

• Sustainability of production:
• No depletion of resources

• No production of poisonous substances

• No jeopardizing of health

• Technical complexity of maintenance

On Technology and Engineering



• In general, but certainly in software:
• Scalability is related to ability to collaborate:

• Control communication effort, e.g., “The Mythical Man-Month”

• Unleash armies of volunteers, e.g., Open Source movement

• Technical complexity of collaborative manufacturing

• Sustainability is related to ability to evolve:
• Upgrade and strengthen artifacts instead of destroying and producing new ones

• Imagine evolving information systems instead of replacing legacy systems

• Technical complexity of evolutionary maintenance

On Technology and Engineering



LEVERAGING METAPROGRAMMING

Overview

• Introduction

• On Evolvable Metaprogramming

• Stable software elements

• Expansion and rejuvenation

• Collaboration and meta-circularity

• Co-Creating Software Applications

• Scaling Generative Programming

• Conclusion

Leveraging Collaborative Metaprogramming for Sustainable Innovation and Co-Creation



Change Ripples: A Basic Transformation

Invoice
-Number
-Order
-…

CreateInvoice

Order
-Ref
-Product
-…

SendInvoice

ProcessOrder

Add
Attribute

IMPACT

IMPACT

IMPACT



Design Theorems for Stable Software

• In order to avoid dynamic instabilities in the software design cycle, the
rippling of changes needs to be depleted or damped: a = 0

• As these ripples create combinations of multiple changes for every
functional change, we call these instabilities combinatorial effects

• Demanding systems theoretic stability for the software transformation,
leads to the derivation of principles in line with existing heuristics

• Adhering to these principles avoids dynamic instabilities, meaning that
these principles are necessary, not sufficient for systems stability



Encapsulating Basic Primitives

Invoice
-Number
-Order
-…

CreateInvoice

Order
-Ref
-Product
-…

SendInvoice

ProcessOrder



Invoice
-Nr
-Date
-…

Separating Cross-Cutting Concerns



Order

Persistency

Access Control

Remote Access

Invoice Payment
Element Element Element

The Emergence of Elements



Invoice
-Nr
-Date
-…

Invoice
-Nr
-Date
-…

Persistency

Access
Control

Remote
Access

Invoice
Element

An Advanced Transformation

SOAP
Connector

REST
Connector



Invoice
-Number
-Order
-…

CreateInvoice

Order
-Ref
-Product
-…

SendInvoice

ProcessOrder

Invoice
Element

Order
Element

CreateInvoice
Element

ProcessOrder
Element

SendInvoice
Element

Add
Attribute

IMPACT

IMPACT

IMPACT

An Advanced Transformation



• Element structures are needed to interconnect with CCC solutions

• NS defines 5 types of elements, aligned with basic software concepts:
• Data elements, to represent data variables and structures

• Task elements, to represent instructions and/or functions

• Flow elements, to handle control flow and orchestrations

• Connector elements, to allow for input/output commands

• Trigger elements, to offer periodic clock-like control

• It seems obvious to use code generation techniques to create instances
of these recurrent element structures

• Due to its simple and deterministic nature, we refer to this process as
expansion, and to the generators as expanders

Normalized Systems Elements



LEVERAGING METAPROGRAMMING

Overview

• Introduction

• On Evolvable Metaprogramming

• Stable software elements

• Expansion and rejuvenation

• Collaboration and meta-circularity

• Co-Creating Software Applications

• Scaling Generative Programming

• Conclusion

Leveraging Collaborative Metaprogramming for Sustainable Innovation and Co-Creation



Expansion of Stable Elements
Order
-Ref
-Product
-…

Invoice
-Number
-Order
-…

Inv-A
-Ref
-…

Inv-C
-Ref
-…

Ord-A
-Ref
-…

Inv-B
-Ref
-…

CreateInvoice

SendInvoice

ProduceOrder

ProcessInvoice

ProcessOrder

DeclineOrder

Invoice
Flow

Order
Flow



• Structure should be recurring, as variations:
• increase complexity of codebase

• decrease consistency in behaviour

• Recurring structure may need to vary over time:
• new insights

• discovery of flaws

• changes in technologies

Structural changes may need to be applied with retroactive effect,
but the efforts increase with the frequency of change.

On Updating Recurring Structure K=50 K=20 K=10 K=5

5

10 10

15

20 20 20

25

30 30

35

40 40 40

45

50 50 50

55

60 60 60

65

70 70

75

80 80 80

85

90 90

95

100 100 100 100

150 300 550 1050

N(N+K)

2K

K Total

100 100

50 150

20 300

10 550

5 1050

2 2550

1 5050

N=100

N instances, update every K #updates =



• Recurrent stable structures are required to limit complexity
and to guarantee consistency

• Recurrent stable structures need to be able to adapt over time,
to overcome flaws and technology changes

• Additional custom code is inevitable and needs to be
maintained across updated stable structures

An automated mechanism is required,
providing both code generation or expansion,

and regeneration with harvesting and injection.

On Updating Recurring Structure



• We identify four dimensions of variability:
• Models or mirrors, new data attributes/relations, new elements

• Expanders or skeletons, new or improved implementations of concerns

• Infrastructure or utilities, new frameworks to implement various concerns

• Custom code or craftings, new or improved implementations of tasks, screens

• If separated and well encapsulated
• Number of versions to maintain is additive: #V = #M + #E + #I + #C

• Number of versions available is multiplicative: #V = #M x #E x #I x #C

• Where the same holds within any individual dimensions,

e.g., infrastructure dimension: #I = #G x #P x #B x #T

Variability Dimensions and Expansion



Invoice
-Number
-Order
-…

CreateInvoice

Order
-Ref
-Product
-…

ProcessOrder

SendInvoice

Transaction

Access Control

Integrating the Dimensions of Variability
Skeletons

Mirrors

Utilities

Persistency

Codebase

Craftings



Invoice
-Number
-Order
-…

CreateInvoice

Order
-Ref
-Product
-…

ProcessOrder

SendInvoice

Transaction

Access Control

Change Dimension 1: The Mirrors
Skeletons

Mirrors

Utilities

Craftings

Codebase

Persistency



Invoice
-Number
-Order
-…

CreateInvoice

Order
-Ref
-Product
-…

ProcessOrder

SendInvoice

Transaction

Access Control

Change Dimension 2: The Utilities
Skeletons

Mirrors

Utilities

Craftings

Codebase

Persistency

Transaction



Invoice
-Number
-Order
-…

CreateInvoice

Order
-Ref
-Product
-…

ProcessOrder

SendInvoice

Transaction

Access Control

Change Dimension 3: The Skeletons
Skeletons

Mirrors

Utilities

Craftings

Codebase

Persistency



Invoice
-Number
-Order
-…

CreateInvoice

Order
-Ref
-Product
-…

ProcessOrder

SendInvoice

Transaction

Access Control

Change Dimension 4: The Craftings
Skeletons

Mirrors

Utilities

Craftings

Codebase

Persistency



Invoice
-Number
-Order
-…

CreateInvoice

Order
-Ref
-Product
-…

ProcessOrder

SendInvoice

Transaction

Access Control

Change Dimension 4: The Craftings
Skeletons

Mirrors

Utilities

Craftings

Codebase

Persistency

Feature 1

Feature 2

Feature N



Sustaining an Evolving Utility Landscape

• Remarks:

• Part of Smarg :
• ݐ݁ ݉ ݈݌ ݐܽ݁ ݏ ݊ܿ݋ ܿ݁ ݎ݊ = ݊ܿ݋ ܿ݁ ݎ݊ }

• Configuration :
• Define setting or option

New
concern

Ex Ante 11 – Expansion An additional concern for an of element
can be made available for all information systems in a stable way.

…



LEVERAGING METAPROGRAMMING

Overview

• Introduction

• On Evolvable Metaprogramming

• Stable software elements

• Expansion and rejuvenation

• Collaboration and meta-circularity

• Co-Creating Software Applications

• Scaling Generative Programming

• Conclusion

Leveraging Collaborative Metaprogramming for Sustainable Innovation and Co-Creation



Collaboration with Vertical Integration

ERP1 ERP2 ERPn…
Model

Source
Code

Source
Code

Source
Code

Model

Model

Config
Data Config

Data

Config
Data Source

Code

Source
Code Source

Code

Source
Code

Source
Code

Model

Source
Code

Source
Code

Source
Code

Model

Model

Config
Data Config

Data

Config
Data Source

Code

Source
Code Source

Code

Source
Code

Source
Code

Model

Source
Code

Source
Code

Source
Code

Model

Model

Config
Data Config

Data

Config
Data Source

Code

Source
Code Source

Code

Source
Code

Source
Code



Collaboration with Horizontal Integration

Model1

Code Templates1

Source
Code

Source
Code

Source
Code

Model2

Model3

Model4

ModelN…

Code Templates2

Code Templates3

Code Templates4

Code TemplatesM…

…

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

x

=

Models

Templates

Source

N

NxM

M



• Modelers would collaborate on domain models
• Improving model versions and variants

• Adding new functional business modules

• (Meta)programmers would collaborate on templates
• Improving and integrating new insights

• Adding and improving cross-cutting concerns

• Supporting modified and new technologies

• Software systems would be based on metaprogramming
• for a selected version of a domain model

• using a specified set of coding templates

• targeted at specific technology platform

Collaboration with Horizontal Integration



• You also have to maintain the meta-code
• Consists of several modules

• Is in general not trivial to write

• Will face growing number of implementations:
• Different versions

• Multiple variants

• Various technology stacks

• Will have to adapt itself to:
• Evolutions of its underlying technology

• Which even may become obsolete

• Meta-Circularity: meta-code that (re)generates itself

Metaprogramming with Vertical Integration

Reader classes

Model classes

Control classes

Generator classes

Code Templates

Model



Metaprogramming with Vertical Integration

Model

Reader classes

Model classes

Control classes

Generator classes

Code Templates

Source
Code

Source
Code

Source
Code

Model

Reader classes

Model classes

Control classes

Generator classes

Code Templates

Source
Code

Source
Code

Source
Code

Model

Reader classes

Model classes

Control classes

Generator classes

Code Templates

Source
Code

Source
Code

Source
Code

MP1
MP2 MPn…



Metaprogramming with Vertical Integration

Model

Reader classes

Model classes

Control classes

Generator classes

Code Templates

Source
Code

Source
Code

Source
Code

Model

Reader classes

Model classes

Control classes

Generator classes

Code Templates

Source
Code

Source
Code

Source
Code

Model

Reader classes

Model classes

Control classes

Generator classes

Code Templates

Source
Code

Source
Code

Source
Code

MP1
MP2 MPn…



Metaprogramming with Vertical Integration

Model

Reader classes

Model classes

Control classes

Generator classes

Code Templates

Source
Code

Source
Code

Source
Code

Model

Reader classes

Model classes

Control classes

Generator classes

Code Templates

Source
Code

Source
Code

Source
Code

Model

Reader classes

Model classes

Control classes

Generator classes

Code Templates

Source
Code

Source
Code

Source
Code

MP1
MP2 MPn…



• Just like the programming code, the metaprogramming code needs to be
rejuvenated and adapted to new technologies

• Just like the application skeletons, the structure of the models itself
needs to be able to evolve

 you need the models and the generative software to evolve

 you need meta-circular metaprogramming
• i.e. generative programming that includes the generative code

Metaprogramming with Horizontal Integration



On Horizontal Integration in Metaprogramming

Model1

Code Templates1

Source
Code

Source
Code

Source
Code

Model2

Model3

Model4

ModelN…

Code Templates2

Code Templates3

Code Templates4

Code TemplatesM…

…

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

Source
Code

x

=

Models

Templates

Source

N

NxM

M



Bootstrapping Meta-Circular Metaprogramming

Generator
Code

Generated
Code

Generated
Artifacts

Generator code
generates code

Generated code
itself generates

Generator code
generates itself



LEVERAGING METAPROGRAMMING

Overview

• Introduction

• On Evolvable Metaprogramming

• Co-Creating Software Applications

• The case for co-creation

• Some real-world examples

• Scaling Generative Programming

• Conclusion

Leveraging Collaborative Metaprogramming for Sustainable Innovation and Co-Creation



• The creation of a software application and/or product requires a large
amount of domain knowledge

• The creation of a software application and/or product requires a large
amount of software know-how and infrastructure

• Starting from a domain company, the software can either be
• Outsourced to an IT services company

• Can be quite expensive

• Insourced by hiring software professionals
• Requires a critical mass and can be vulnerable

• Both scenarios easily lead to external capital, restricting various degrees
of freedom such as the time frame and the founders’ original goals

The Case for Application Co-Creation



• We envisage a long-term co-creation partnership featuring:
• a shared center for software know-how and infrastructure

• intense collaboration on the models between domain experts and software
engineers supported by the metaprogramming environment

• continuous rejuvenation of the software application based on the based on the
re-generation capabilities of the metaprogramming environment

• build-up over time of a dedicated software team at the domain company to
consolidate knowledge and balance the shared software center

• slow start of costs and expenditures to allow for organic business development,
including reduced rates and partial conversion to stocks

• maximum internal capacity of starting co-creation partnerships at 20%

The Case for Application Co-Creation



LEVERAGING METAPROGRAMMING

Overview

• Introduction

• On Evolvable Metaprogramming

• Co-Creating Software Applications

• The case for co-creation

• Some real-world examples

• Scaling Generative Programming

• Conclusion

Leveraging Collaborative Metaprogramming for Sustainable Innovation and Co-Creation



Case 1: Sustainable Energy Monitoring

• Monitoring and management of residential energy installations, such as
solar panels, heat pumps, batteries and charging stations

• Starting in 2015 with a market taking off extremely slow

• Taking off with 1 domain expert, 1 software engineer in shared center

• Evolving to 2 domain experts, 3 software engineers in shared center

• First software engineers will now be insourced



Case 1: Sustainable Energy Monitoring



Case 2: Medical Transport via Drones

• Command & Control center for medical transport via drones, integrating
hospital systems, air traffic control systems, and drone control systems

• Starting in 2015 before even the required legislation was put in place

• Taking off with 1 domain expert, 1 software engineer in shared center

• Evolving to 3-5 domain experts, 4 software engineers in shared center

• First software engineers will now be insourced



Case 2: Medical Transport via Drone

COMMAND & CONTROL
CENTRE (C2C)

SIM

USSP
Flight plans
Authorization
Monitoring

Order execution

Order intake

Authorization +
Uspace services

Common
Information Service
Provider

HOSPITAL

E-X8
Transport

E-VTOL

E-passanger drone

Manned aviation Traffic simulation

LABORATORY HOSPITAL

AIR TRAFFIC
CONTROL

H²-VTOL



Case 3: Privacy Management Software

• Privacy management software suite with international ambitions

• Starting in 2019 with very limited resources

• Taking off with 2-3 domain expert, 1 software engineer in shared center

• Evolving to 3-5 domain experts, 4 software engineers in shared center

• First software engineers are now being insourced



Case 3: Privacy Management Software



Case 4: Referral Platform for Healthcare

• Referral platform for healthcare providers and primary care

• Starting in 2020 with extremely limited resources

• Taking off with 1 domain expert, 1 software engineer in shared center

• Currently continues in low expenditure mode



Case 4: Referral Platform for Healthcare



LEVERAGING METAPROGRAMMING

Overview

• Introduction

• On Evolvable Metaprogramming

• Co-Creating Software Applications

• Scaling Generative Programming

• The need to scale

• Taking the first steps

• Conclusion

Leveraging Collaborative Metaprogramming for Sustainable Innovation and Co-Creation



• Automatically generating source code is as old as programming itself
• Called automatic programming, generative programming, metaprogramming

• The issues that generative programming is supposed to address/solve
are as relevant and acute as ever:

• Software is growing in size and importance

• Shortage of tens of thousands of programmers

• Multi-trillion lines of code with billions of defects

• Gigantic IT development and maintenance budgets

• For programming, interfaces have enabled scalable collaboration:
• Within companies, across companies, in open source communities

• Resulting in rich application offering and versatile hardware support

Need to Scale Generative programming



• Better known through names/trends like:
• Model-Driven Architecture (MDA)
• Model-Driven Engineering (MDE)
• Model-Driven Software Development (MDSD)
• Low-Code Development Platforms (LCDP)
• No-Code Development Platforms (NCDP)

• The various trends share the use of models to structure requirements
and/or to represent domain knowledge:

• The field is still evolving and facing challenges and criticisms:
• Suitability for large-scale and mission-critical enterprise systems
• Lack of intermediate representation, pervasive concepts for DSL reuse
• Either a conceptual gap toward code, or tied to a technological solution

The Field of Generative Programming



• Generative programming performs a transformation
• From domain and/or intermediate models

• To code generators and programming code

• Need to define open interfaces at both ends
• To add or extend domain models

• To add or replace code generators

• A meta-circular architecture as proposed
• Simplifies the definition of the interfaces

• Allows for a horizontal integration architecture

• Avoids the non-scalable burden on the meta-code
• To integrate, or at least accommodate, ever more extensions at both ends

Two-Sided Interfaces for Metaprogramming



LEVERAGING METAPROGRAMMING

Overview

• Introduction

• On Evolvable Metaprogramming

• Co-Creating Software Applications

• Scaling Generative Programming

• The need to scale

• Taking the first steps

• Conclusion

Leveraging Collaborative Metaprogramming for Sustainable Innovation and Co-Creation



Exchanging Code Generators with Partners

• Using the standard web application meta-model, generators for
• Implementations of layers in other frameworks

• e.g., Spring Boot, Angular

• Additional application functionality
• e.g., advanced search, improved data security

• Using additional dedicated meta-models with generators for
• Message connectors

• Specific types of screens

• Event handling

• Using completely different meta-models
• Documents, cloud deployment, simulations



Exchanging Code Generators with Partners

• Meta-models are based on a common basis of ERD / UML / OWL:
• Entity classes or data entities

• Attributes or datatype properties

• References or object properties

• Instances of these entities or classes

• After defining meta-models, tooling:
• Generates the meta-circular stack for these entities, including:

• classes representing model instances , XML readers and writers

• view and control classes for create and manipulate models in a user interface

• Provides native support
• to enter models based on these meta-models

• to invoke expanders defined for these models



Exchanging Code Generators with Partners

• Code generators are packaged as Expansion Resources, containing
• Sets of individual expanders, each generating 1 artifact

• Possibly a meta-model definition and/or transmuters

• Possibly some run-time libraries

• Expansion resources can be made available to all partners
• Willingness is abundant, technicalities challenging

• Developed expansion resources include
• Some major bundles from Dutch Tax Office

• Message connectors, view models

• Several smaller bundles from partners like Cast4All, Responsum
• Advanced search, data security



Integrating Another Metaprogramming System

System / Federate
Simple software application to orchestrate workflow and call physics

models

(Human
Exhaustion)

Physics Model

(Determine
Weight) Physics

Model

Simulation Middleware Interface

y=mx2

Data structures
Business logic
Inputs / outputs
Data sources

• Software best practices via
Normalized Systems Theories

• Connection
• Timing
• Coordination across models
• Database connection
• Threading
• etc.

Code generation template

• Integration with models from the High-Level Architecture for distributed
simulations to combine federated simulations



LEVERAGING METAPROGRAMMING

Overview

• Introduction

• On Evolvable Metaprogramming

• Co-Creating Software Applications

• Scaling Generative Programming

• Conclusion

Leveraging Collaborative Metaprogramming for Sustainable Innovation and Co-Creation



• We have argued that the ability to collaborate and evolve is crucial for
software to realize leverage effects in a scalable and sustainable way

• We have argued that the application of metaprogramming, and even
meta-circular metaprogramming is crucial to realize these abilities

• We have explained how these abilities can enable the productive and
sustainable co-creation of software applications with several cases

• We have indicated that this co-creation at the meta-level can even be
more powerful, and have explained our first elementary steps

• We invite everyone who is interested in making and exchanging modules
for code generation, i.e., expansion resources, to join us

Conclusion



• Mannaert Herwig, McGroarty Chris, Gallant Scott, De Cock Koen, Integrating Two Metaprogramming Environments :
An Explorative Case Study : ICSEA 2020 - ISSN 2308-4235 - IARIA, 2020, p. 166-172

• Mannaert Herwig, De Cock Koen, Uhnak Peter, On the realization of meta-circular code generation : the case of the
normalized systems expanders, ICSEA 2019 - ISSN 2308-4235 - IARIA, 2019, p. 171-176

• De Bruyn Peter, Mannaert Herwig, Verelst Jan, Huysmans Philip, Enabling normalized systems in practice : exploring a
modeling approach, Business & information systems engineering - ISSN 1867-0202 - 60:1(2018), p. 55-67.

• Mannaert Herwig, Verelst Jan, De Bruyn Peter, Normalized systems theory : from foundations for evolvable software
toward a general theory for evolvable design, ISBN 978-90-77160-09-1 - Koppa, 2016, 507 p.

• Mannaert Herwig, Verelst Jan, Ven Kris, Towards evolvable software architectures based on systems theoretic stability,
Software practice and experience - ISSN 0038-0644 - 42:1(2012), p. 89-116

• Mannaert Herwig, Verelst Jan, Ven Kris, The transformation of requirements into software primitives : studying
evolvability based on systems theoretic stability, Science of computer programming - ISSN 0167-6423 - 76:12(2011), p.
1210-1222

• Mannaert Herwig , De Bruyn Peter, Verelst Jan, On the Interconnection of Cross-Cutting Concerns within Hierarchical
Architectures, IEEE Transactions on Engineering Management - ISSN 1558-0040 - 69:6(2022), p. 3276-3291.

• Normalized Systems Foundation Lectures : https://www.youtube.com/c/normalizedsystems

• Normalized Systems Documentation and Tooling : https://foundation.stars-end.net

Some References



QUESTIONS ?

herwig.mannaert@uantwerp.be


