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ADVANTAGES

- Small and Lightweight
- Possibility of being embeded in composite materials
- Passive nature
- Large dynamic ranges
- Single- & Multi-Point Sensing Configurations
- Large wideband
- Low attenuation
- Multiplexing techniques
- EMI immunity

Technology Overview. Advantages
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Type of optical fiber sensors

Type of Modulation

Intensity
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Spectroscopic

Physical Magnitude

Voltage/current

Temperature

Radiation

Chemical/gas

Rotation
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Electroagnetic fields

Mechanical

Bending/torsion, velocity, 
vibration/acceleration,
displacemen/location, 
pressure/acoustics, force

Biomedical

Spatial distribution

Point

Distributed

Quasi-distributedNature of
transduction

Intrinsic

Extrinsic

Technology Overview. Classification

Ignacio R. Matías et al. Fiber optic sensors. 
Encyclopedia of Sensors. Vol. 7, pp. 163-181.
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Technology Overview. Extrinsic sensors

Fluorescence

Laser Doppler
Velocimetry

Reflection
Scattering

Photoelastic
effects

Absorption
External 
cavities
(EFPI)

MEMS
OSA

Encoder 
Plates
Disks

Total
Internal 
Reflection

Numerical 
Aperture

Evanescent

Extrinsic Optical 
Fiber Sensors

Ignacio R. Matías et al. Fiber
optic sensors. Encyclopedia of 
Sensors. Vol. 7, pp. 163-181.
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Technology Overview. Intrinsic sensors

Fiber Bragg 
Grattings
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Microbend
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Crystal
Fibers

Distributed/
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Blackbody
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Sensors
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Michelson
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Band
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Ignacio R. Matías et al. Fiber
optic sensors. Encyclopedia of 
Sensors. Vol. 7, pp. 163-181.
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Light Sources

PackagingSpecialty
Optical Fibers

Sensors

Detectors &
Interrogators

Fiber Optic Sensing System Key Building Blocks

User Interface
Data Acquisition & Interpretation

Design, 
Planning and
Installation

Courtesy of Alexis Méndez. MCH Engineering, LLC
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Market Drawbacks

• Unfamiliarity with the technology
• Conservative/no-risk attitude of some industries
• Need for a proven field record
• Compatibility with existing equipment
• Cost
• Availability of trained personnel
• Turn-key type systems (total sensing solution)
• Lack of standards
• Quality, performance, packaging & reliability deficiencies across vendors
• Major sensing initiatives likely dominated by wireless

Fiber Optic Market Status

� Fragmented 

� Niche markets
� Foothold in niche applications
� Slow adopting industries
� Positive investment environment
� Major franchises emerging

Positive and continued steady growth
� Important growth in chemical/ bio-detection

Courtesy of David Huff (Oida) Source: Quorex
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Source: INTECHNO CONSULTING

Sensors Market Size
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Development of the World Market Share of Fiber 
Optical Sensors until 2008

US $ Million

FOS WORLD MARKET

1998 – U$ 175 M – MKT SHARE (0,54%)
2003 – U$ 283 M - MKT SHARE (0,67%)
2008 – U$ 1450 M –MKT SHARE (2,87%)

AVERAGE OF ANNUAL GROUTH RATE – 23,5%

SENSORS WORLD MARKET

1998 – U$32,534.0M
2003 – U$42,158.4M
2008 – U$50,594.3M

AVERAGE OF ANNUAL GROUTH RATE – 4,5%
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Applications

Civil (bridges, roads, dams, tunnels)

Transportation 
(Rail monitoring, 
Weight in motion, 
Carriage safety)

Energy Industry (Power plants, 
Boilers & Steam turbines, Power 
cables, Turbines, Refineries)

Aerospace (Jet 
engines , Rocket & 
propulsion systems, 

Fuselages)

Oil & Gas (Reservoir 
monitoring, downhole
P/T sensing, seismic 

arrays)

Border security 
and power line 

monitoring

Courtesy of David Huff 
and Alexis Mendez
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Courtesy of David Huff (Oida). Source: Light Wave Venture

Optical Fiber Sensor Market Revenues Breakdown
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Optical Fiber Sensor Market Forecast

Courtesy of David Huff (Oida). Source: Light Wave Venture
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Nanotechnology and fiber optic sensors?

Nanostructure with a size between molecular and microscopic

layers of subwavelength thickness (botton-up)

Nanotextured surfaces Nanoparticles

Nanotubes

Nanofilm1D

2D

3D
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Deposition techniques for sensing coatings in OFSDeposition techniques for sensing coatings in OFS

Sputtering in a radio frequency
planar magnetron systems

Gel solutions

Langmuir-Blodgett

Layer-by-layer

Nanotechnology and fiber optic sensors?

Electron beam, physical 
and thermal evaporating

Chemical vapor deposition

Spin, dip coatings
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Introduction

1960s: Layer-by-layer adsorption of oppositely charged colloidal particles was first 
proposed by R. K. Iler R.K. Iler, J. Colloid Interface Sci., 21, 569-594 (1966) 
“Multilayers of colloidal particles”

1990s: reappearance of works on this topic with Decher and co-workers as the 
pioneers G. Decher, J.-D. Hong, Makromol. Chem., Macromol. Symp., 46, 321-327 
(1991). 

Today: Layer-by-Layer Electrostatic Self-Assembly (ESA) is one of  the most 
promising techniques for the deposition of nanostructured tailored materials on 
complex surfaces

• Possible ESA substrates: metals, plastics, ceramics, oxydes, semiconductors with
different sizes and shapes such as prisms, concave or convex surfaces.

• Possible ESA coating materials: metals, semiconductors, polymers, dyes, indicators, 
quantum dots, enzymes and many others (Au, Pt, Al2O3, Fe3O4, SiO2, TiO2, ZrO2, 
poly(sodium-4-styrenesulfonate) (PSS), poly(diallydimethyl ammonium chloride) (PDDA), poly
acrylic acid (PAA), poly(allylamine hydrochloride) (PAH), poly R-478, poly S-119, Neutral Red, 
Fluorescein, HPTS, PPV, Prussian Blue, Glucose Oxidase, Silica, Quantum Dots…)
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The ESA Method: diverse applications

MICROSPHERES

TEXAS A&M, M. McShane et al.
COATINGS ON BIOLOGICAL CELLS

University of Melbourne, F. Caruso et al.

SUPERHYROPHOBIC SURFACES
M.I.T., M. F. Rubner et al.

PRISMS LENS

NANOSONIC, INC., R. O. Claus et al.
FLEXIBLE SUBSTRATES
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Nanostructured coatings onto tapered ends of optical fibers

Glucose sensing

tapered ends

Jesús M. Corres, Anai Sanz, Francisco J. Arregui, Ignacio R. 
Matías and Joaquín Roca. “Fiber optic glucose sensor based on 
bionanofilms”. Sensors and Actuators B. Not publiseh yet
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Experimental response of a 20m waist diameter TOF-based humidity sensors to RH corresponding to three 
working points of coating thicknesses: 23, 26 and 62 bilayers

Sensors and Actuators B. Vol.122, pp. 442-449. Mars 2007.

Sensors based on Tapered Optical Fibers
Humidity sensing. Spectral characterization

TOF
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Experimental response to the human breath
Humidity response time 

compared to a commercial one 
(Blue box humidity sensor 

T12000/6,
from Philip Harris)

Sensors based on Tapered Optical Fibers

Humidity sensing. Response time

J. M. Corres, F. J. Arregui and Ignacio R. Matias. “Design of Humidity Sensors based on Tapered 
Optical Fibers”. IEEE Journal of Lightwave and Technology vol. 24 (11); pp.4329-4336 . Nov. 2006 
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Sensors based on Hollow core fibers HCF
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“Nanofilms on hollow core fiber-
based structures: an optical study”. 
IEEE J. of Light. and Tech. Vol. 24 
(5); pp. 2100-2107. May 2006 
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Ignacio R. Matías et al. “Nanofilms onto a 
hollow core fiber”. Opt. Eng. Letters. Vol. 45 

(5); 050503. May 2006 
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Nanostructured coatings on Long Period Gratings: a pH sensor

LPG overlays

Optical response of one of the attenuation bands of a LPG coated
with [PAH/PAA] coatings when is submitted to pH changes

J. M. Corres, I. Del Villar, I. R. Matias, F. J. Arregui, Optics Letters, 32 (1), 29, 2007
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Optical fiber microgratings gratings

Fabrication of Microgratings on the Ends of Standard Optical Fibers by the Electrostatic Self-Assembly Monolayer Process. 
Optics Letters, vol. 26 (3); pp. 131-133, 2001. 
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F. J. Arregui, Richard O. Claus, Kristie L. Cooper, Carlos Fdez-Valdivielso and Ignacio R. Matías. “Optical Fiber Gas Sensor 
Based on Self-Assembled Microgratings”. IEEE Journal of Lightwave Technology, vol. 19 (12); pp. 1932-1937, 2001. 
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1D PBG with defects others

Refractometer

Optics Letters. 28 (13), pp. 1099-1101, 2003 
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nanoFabry-Perots

NFP Cavities. Experimental set-up
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125 microns

nanoFabry-Perots
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nanoFabry-Perots
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D. Galbarra, F. J. Arregui, I. R. Matias and R. O. Claus, Smart Materials and Structures, 14 (4), 2005
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NFP Cavities. Ammonia sensors nanoFabry-Perots

Recovery time < 4 seconds
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Smart Materials and Structures. Vol. 14; pp. 739-744, 2005. 
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NFP Cavities. Volatile organic compounds sensors
[Vap+PAH+/PAA-]

nanoFabry-Perots
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Response of the sensor for different methanol concentrations

NFP Cavities. Volatile organic compounds sensors
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Comparison between ethanol and methanol

NFP Cavities. Volatile organic compounds sensors
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NFP Cavities. Human breathing

nanoFabry-Perots

Sensor and opto-electronic units

Face mask and sensor
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NFP Cavities. Human breathing

(a) (b)

(c) (d)
nanoFabry-Perots

IEICE Transactions on Electronics, vol. E83-C (3); pp. 360-365, 2000
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NFP Cavities. Interrogator system for NFP reflexive sensors

nanoFabry-Perots
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nanoFabry-Perots

NFP Cavities. Humidity sensors using silica nano-spheres

Caracterization (AFM)

50 nm SiO2 nanoparticles
Contact angle: 5º

Surface: Silica
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CONCLUSIONS

• The Layer-by-Layer Electrostatic Self-Assembly Method has been presented as a useful tool for 
fabricating nano-structured sensing coatings, not only fiber optic sensors.

• These coatings can be deposited on substrates of different shapes: flat, cylindrical or conical

• Different optical fiber sensors have been already experimentally demonstrated (humidity, volatile 
organic compounds, ammonia, glucose, etc.) and the possible applications of this technique in the 
sensing field are very promising.

• The sensors have a very fast response time, can operate at room temperature and it is possible to 
find a suitable architecture depending on the specific application.

• Several different optical fiber structures to fabricate sensors have been proposed: Tapered ends, 
Tapered optical fibers, Hollow core fibers, Long period gratings, Optical fiber gratings, NanoFabry-
Perot Cavities, 1D PBG with defects, etc.). All of them are feasible to be implemented using ESA 
technique with different sensing properties and final performances.

• It is possible to design specific sensors for specific applications by varying any of the design 
parameters: materials, thickness, number of bilayers, structures, etc.
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