

UIE working group Power Quality

Voltage Dip Immunity of Equipment and Installations

The First International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

ENERGY 2011

May 22-27, 2011 - Venice/Mestre, Italy

TUTORIAL

Improving Process Immunity (Part 7)

Flow chart of Immunity Objectives

"Information on voltage dips expected or typical at PCC"

Power supply performance characteristics :

- Voltage Level
- Network configuration
- Transformers configurations
- Overhead Vs underground networks
- Length of adjacent network
- Vegetation
- Weather (lightning, wind, snow, ice, ...)
- Pollution (salt, fire,...)
- Other loads

date

Example - Voltage dips at a facility Voltage dip in time

#	Date	Time	Туре	Duration (seconds)	Min. Remaining voltage (%)	Depht ØA	Depht ØB	Depht ØC
13	2002-05-27	18:06:00	Ι	0,217	63%	108,7 %	63 %	111,5 %
14	2002-05-31	12:14:52	Π	0,320	87,3%	89%	87,3%	101,7%
15	2002-06-23	18:27:07	Π	0,067	73,5%	73,5%	76,7%	98,5%
16	2002-07-02	17:01:18	-	0,025	83%	97,4%	83%	92,2%
17	2002-07-02	18:17:33		0,033	80,5%	80,7%	80,5%	85,5%
19	2002-07-05	11:16:51	Ι	0,008	86,5%	94,2%	97,7%	86,5%
20	2002-07-05	11:55:16	-	0,025	84,5%	92,3%	97,1%	84,5%
21	2002-07-05	16:30:40	Π	0,100	82,1%	82,1%	96,1%	89,6%
28	2002-08-14	16:31:26	Π	0,150	56 ,1%	56,1%	58,2%	85,6%
51	2003-06-09	9:51:01	III	0,192	46,6%	48,1%	48,4%	46,6%

Events log example

Example - Voltage dips at a facility Voltage dip on the worst phase cases

🔷 Type I & II 🔳 Type III

Voltage dips measured at a facility over a 1,5 year period

Step 2 – Process Peformance Requirement

"Assessment of the number of process trips a customer can tolerate in a year"

#	Date	Time	Туре	Duration (seconds)	Min. Remaining voltage (%)	Lost of load (minutes)	Cost (rubber & plastics) minimum = 3\$/kW [*] Based = 5 MW	Cost (semiconductor) minimum = 20\$/kW[*] Based = 25 MW
13	2002-05-27	18:06:00	I.	0,217	63%	0	-	-
14	2002-05-31	12:14:52	Ш	0,320	87,3%	30	7 500 \$	37 500 \$
15	2002-06-23	18:27:07	Ш	0,067	73,5%	30	7 500 \$	37 500 \$
16	2002-07-02	17:01:18	I.	0,025	83%	0	-	-
17	2002-07-02	18:17:33	Ш	0,033	80,5%	20	5 000 \$	25 000 \$
19	2002-07-05	11:16:51	1	0,008	86,5%	0	-	-
20	2002-07-05	11:55:16	1	0,025	84,5%	0	-	-
21	2002-07-05	16:30:40	Ш	0,100	82,1%	0	-	-
28	2002-08-14	16:31:26	Ш	0,150	56,1%	80	20 000\$	100 000\$
51	2003-06-09	9:51:01	Ш	0,192	46,6%	120	30 000\$	150 000\$

Impact on process

*ref.: http://www.energypulse.net/centers/article/article_display.cfm?a_id=1890

Voltage dips impact on the process (from the worst phase cases)

"Process assessment to find the critical equipments"

PIT definition :

"Time interval between the start of the voltage interruption and the moment the process parameter goes out of the allowed tolerance limit"

Step 3 – PIT (Process Immunity Time)

LEVEL 1	LEVEL 2	LEVEL 3	Process parameter	PIT	Priority	Action
Reactor						
	Cooling					
		DOL IM 1 (water)	Reactor cooling water temp	5s	4	Restart 1
		Oil pump	Oil pressure	1,5s	2	Crucial
		DOL IM 2 – fan	Cooling of the water circuit	3min	7	Restart 3
	Reaction					
		DOL IM 3 (feed)	Flow rate	30s	6	Restart 2
		ASD 1 (mixer)	Reaction time	бs	5	Restart
		ASD 2 (air)	% O ₂	2s	3	Mitigate
	Control					
		Temperature sensor	Reactor temperature	1 h	8	
		Oxygen measurement	% O ₂	1s	1	Mitigate
		PLC with UPS		1 h	8	

Listing of all process components such as :

Motor, drive, controls, PLC, sensors, lights, ...

Step 4 – Process Immunity Requirement

"Determination of the appropriate immunity curve"

Type I & II Voltage dips

Voltage dips on the worst phase cases Note: Only Type I & II curves are shown for simplification

Step 4 – Process Immunity Requirement

Type III Voltage dips

Voltage dips on the worst phase cases Note: Only Type III curves are shown for simplification

Step 5 – Equipment Performance Requirement

"Determination of the appropriate immunity curve and performance criteria for each individual equipment"

	LEVEL 1	LEN	/EL 2	LEVEL 3	Process parameter	PIT	Priority	Action	
				DOL IM 1 (water)	Reactor cooling water temp	5s	4	Restart 1	
V	oltage di	o		Equip	ment pe	rforma	ance cr	iteria	
immunity label			Full	operation	n Self-re	covery	Assisted-recover		very
>	Α							/	
Immunity	о В								
nu	20 C1								
n ,	C2 د								
_	D					(Γ		

Step 5 – Equipment Performance Requirement

"Determination of the appropriate immunity curve and performance criteria for each individual equipment"

	LEVEL 1	LEVEL	2 LEVEL 3	Process parameter	PIT	Priority	Action				
Ī			Oil pump	Oil pressure	1,5s	2	Crucial				
Vo	ltaga din		Equips	nont norf	0 11 100 0		torio				
	Itage dip						2 Crucial e criteria				
imm	unity lab	el Fu	l operation	Self-recovery		Assisted-recovery		ery			
_	Α										
nity	В										
imuni class	C1										
mmunity class	C2		Х 🦟								
-	D										

Step 5 – Equipment Performance Requirement

Economic for Rubber & Plastics industry

	Cost (rubber & plastics) minimum = 3\$/kW [*] Based = 5 MW	If Class D used	If Class C2 used	If Class C1 used	If Class B used	lf Class A used
Total lost	212 500 \$	135 000 \$	90 000 \$	75 000 \$	75 000 \$	45 000 \$
saving	0\$	77 500 \$	122 500 \$	137 500 \$	137 500 \$	167 500 \$
	0,0%	36,5%	57,6%	64,7%	64,7%	78,8%

Conclusion :

If no class \Rightarrow no change, no investment, 212 k\$ of lost in 1,5 year If Class D $\Rightarrow \sim 1/3$ of saving on 212 k\$ If Class C2 $\Rightarrow \sim 2/3$ of saving on 212 k\$ Choice now depend on ROI (cost of equipment ?)

The report can be obtained in electronic format for free from: www.uie.org;

a hardcopy can be purchased from www.e-cigre.org

CIGRE/CIRED/UIE Joint Working Group C4.110

Voltage Dip Immunity of

Equipment and Installations

Math Bolen, Corver (E), Math Stephen, Scrover, (D), Sasa Optik, (D), Kurl Stochman (E), Bill Burnatole (U), Jona Mianovc (OB), José Ramen Gordon (ES), Moort Hoursan (OB), Gastin Ethire (CA), Heije Corolos (ES), Matter Fregorio (OB), Philte Gossens (B), Pierr Ligd (EE), Andreia Lasse Aria (PT), Parish Mantaer (A), Alas Mathem (IS), Jaim Menter (IS), Lin Mathema (AV), Mins Mannae (Z), Kana na Repaid (B), Frantis Zudad (CA)

The contribution from S.C. Vegunta, University of Manchester, is acknowledged

Copyright02010

"Denership of a CIORE publication, whether in paper form or on electronic support only inters right of use for personal purposes. An prohibelier, excess if explicitly agreed by CIORE, tuid or partial reproduction of the publication for use other than personal and transferrienting to a third party. Hence disolation on any intranet or other energy are used in its devices."

Disclaimer notice

"CIGRE gives no warranty or assurance about the contents of this publication, nor does it accept any responsibility, as to the accuracy or anhunchreness of the internation. All implied warranties and conditions are solubed in the maximum section permitted by law".

ISBN: 978-2-85873-099-5

1 of 248

Francisc Zavoda

Robert Neumann

