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Utilization rates of CT (♦); nuclear medicine (▪); and MRI (▴) in 
Medicare fee-for-service population, 1998–2008.

[Levin D C et al. AJR 2011]
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Courtesy of Reuben Mezrich MD, Ph.D. 
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The human observer may be the greatest source of 

variability in the image interpretation chain



Courtesy of Nabile, Safdar, MD 
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Vision, Light, Luminance, Motion

Courtesy of Nabile, Safdar, MD 



Vision, Light, Luminance, Motion

Courtesy of Nabile, Safdar, MD 



Mammography

tumor 





Clinical Challenges of Segmentation

Large variations on organ shape, size, location.

Similar appearance.

Unusual/abnormal anatomy.

Fast motion.

Use anatomical and physiological constraints typical to
medical image data.

In clinical practice - manual measurements (often 2D)
– high intra- and inter-operator variability.

– time consuming – expensive.

Loads of data!

Need: quantitative, robust, accurate, repeatable. 



Computer-Assisted Radiology 

CAD applications focused
on organ- or disease-
based applications.

Radiologists analyze the entire image data.
– Organ-by-organ.

– Slice-by-slice.

Migration toward the automated simultaneous analysis
of multiple organs for comprehensive diagnosis.
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Clinical Protocol

Diagnostic

– Contrast enhanced CT – 3 Phases

Serial Monitoring

– Manual measurements

– Limitations

Pre-Contrast Arterial Phase Venous Phase
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Segmentation Techniques

Lower level
– Pixel-based

– Intensity, gradients.

– Region-based

Thresholding.

Edge detection.

Histogram-based.

Mathematical morphology.

Region growing/clustering.

Cannot handle variability!
[espin086.wordpress.com]

[Linguraru et al., Med Imag Anal 2012]



Higher Level Segmentation

Partial Differential Equations
– Snakes

[Kass and Terzopoulos, IJCV 1987]

– Splines

– Deformable models

– Level sets

[Osher and Sethian, J Comput Phys 1988]

Need initialization.

Computationally (in)efficient.

Parametric.

Handle topological changes.

http://www.tnt.uni-hannover.de

http://www.mathworks.com



Higher Level Segmentation

Graph- based Partitioning
– Min-cut (graph-cut)

[Wu and Leahy, IEEE TPAMI 1993]

– Random walker

[Grady, IEEE TPAMI 2006]

Need initialization.

Computationally efficient.

Globally optimal.

Any topology.

Multiple objects.

[Lai et al., Comp Aid Geom Design 2009]

[Linguraru et al., Med Imag Anal 2012]



Higher Level Segmentation

Model-based
– Atlas-based

– Active Shape Models

– Active Appearance Models
[Cootes and Taylor, BMVC 2006]

Need point correspondences.

Sensitive to training set.

Match to a new topology.

Multiple objects.

Hybrids!
[Ionita and Cootes. IEEE ICCV Workshop 2011]

[Linguraru et al., Med Phys 2010]
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Visible Human Project (NLM)

Image library of volumetric data representing complete, 
normal adult male and female anatomy.

MRI/CT/anatomical images.

Models of the body.

Insight Toolkit (ITK).

Columbia University 
found several errors in 
anatomy textbooks.



Anatomical Analysis

Organ size is an indicator of disorders.

Shape is locally variable in organs – global
constraints.

Soft tissue enhancement helps detecting abnormality.

Organ geometry and enhancement are 3D. 



Priors in Medical Data

Location

Shape

Appearance

Interaction

Training data.

Integration.



Probabilistic Atlas
Organ positions normalized to anatomical landmarks.

Linear transformation: translation, rotation.

Probabilities of liver in the abdominal cavity.

…
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Shape Distribution

Linear transformation: translation, rotation, scaling.
Preserves shape.

Statistical Shape Models – from a population.

[Linguraru et al., MICCAI 2010]
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Intensity Model

Organ NCP

PVP
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Enhancement Model

NCP PVP

Slow enhancement 

(high penalty)

Rapid enhancement 

(low penalty)
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Model Integration - Energy

Appearance 

Location

Shape
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Graph Cuts

1. Image can be decomposed into a graph of nodes and edges. 

2. Background (B) and Object (O) seeds initialize a segmentation.

3. Node are connected to terminals and are inter-connected.

4. Node connections have costs.

5. A cut corresponds to the minimum cost/maximum flow of the total 
segmentation energy.

( ) ( ) ( )AEAEAE boundaryregion +=

[Boykov and Jolly: ICCV 2001]



Graph Cuts

Object Terminal 

t-link

n-link

Background 
Terminal 

cut



Multi-objects – Multi-phase

[Linguraru et al., Med Imag Anal 2012]



Integration - 4D Graph

Intensity Model

4D Graph4D Graph

4D Convolution

4D 
Filter

Preprocessing

Smooth Register

Seeds 

Location Model

Probabilistic 
Atlas

Patient
Histograms

Shape  Model

Parzen 
Density

NCP

PVP

Multi-Phase
CT

[Linguraru et al., Medical Image Analysis 2012]



Integration – 4D Graph
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Results



Results



Some Organs are More Challenging!

Pancreas
Liver

Right 

Kidney

Left

Kidney

Spleen



P(Liver) P(Spleen)

P(L-Kidney|Spleen)

P(Pancreas|Liver,Spleen)P(R-Kidney|Liver)

P(Gallbladder|Liver )

Hierarchical Inter-Patient Anatomical 
Variability

Stable organs

1.0

0.18

1.0 0.93

0.68

[Okada et al. , MICCAI Abdominal 2011] 



Prediction-based Probabilistic Atlas

P(Pancreas)

P(R-Kidney) 

Conventional

P(Gallbladder)

P(Pancreas|Liver,Spleen)

P(Gallbladder|Liver )

P(R-Kidney|Liver)

Hierarchical



Anatomical constraints

Important in surgical planning and guidance.

Abdominal Vessels

Courtesy of Yoshinobu Sato, PhD 



Vessel Models

Courtesy of Yoshinobu Sato, PhD 



Flow-in-region atlasExtracted organ & aortaOriginal CT 

Vessel Models

[Suzuki et al., MICCAI CLIP  2002]

Courtesy of Yoshinobu Sato, PhD 
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Proximity of tumors to intrahepatic veins - patient’s 

suitability for surgery/intervention.

Minimally invasive therapies – minimize healthy 

tissue damage.

Living donor liver transplant – segmental anatomy.

Segmentation to Intervention

[Madoff DC, et al 2002]



[Pamulapati et al., MICCAI Abdominal 2011] 

Segmental Anatomy



Vein Clamping

[Drechsler et al., MICCAI Abdominal 2011] 

Simulate effect of vein clamping

– Training

– Planning

– Safety margins



Simulate Catheterization

Localized root and leaf nodes are shown below.

Courtesy of Yoshinobu Sato, PhD 



Shortest path findings are performed from all nodes

Simulate Catheterization

Courtesy of Yoshinobu Sato, PhD 



Shortest path findings are performed from all nodes

Simulate Catheterization

Courtesy of Yoshinobu Sato, PhD 



Consider
Speed – motion modeling 

(US 25 frames/s + heart 80 b/min)

Size – for pediatrics

Interactive segmentation 

– more accurate/preferable

Machine learning 

- learn from large data

Human body is well studied 

(multiple organs)

[Harvard University]
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