U’ ICSEA 2012, November 21.

The Seventh International Conference on
Software Engineering Advances

Normalized Systems:
Towards Designing
Evolvable Modular Structures

Prof. dr. Herwig Mannaert
Normalized Systems Institute
University of Antwerp

Universiteit Antwerpen —

U' About Normalized Systems

e A theoretical framework to gain insight into the
behaviour of modular structures under change, and
aiming at the design of evolvable modular structures

- Initial scope: Modular Structures in Software Architectures

- Based on modularity instead of software techmologies
e = Completely independent of any framework, programming language,

e Has shown to be able to deal with the challenge of increasing complexity
- E.g. hardware, Internet, space industry...

- Grounded in systems theoretic concepts

- Publications: book, >40 (journals + conference proceedings),
(invited) lectures at different universities ...

- Education: undergraduate, postgraduate... Normalized

o

AN INCONVENIENT TRUTH

Universiteit Antwerpen

U-' The Dream: Doug Mc Ilroy

“expect families of routines to be constructed on rational
principles so that families fit together as building blocks”

uit: Mcllroy, Mass Produced Software Components,
1968 NATO Conference on Software Engineering, Garmisch, Germany.

Universiteit Antwerpen _

U' The Reality: Manny Lehman

The Law of Increasing Complexity
Manny Lehman

“As an evolving program is continually changed, its complexity,
reflecting deteriorating structure, increases unless work is done
to maintain or reduce it.”

Proceedings of the IEEE, vol. 68, nr. 9, september 1980, pp. 1068.

Universiteit Antwerpen _

U' An Indication: IT Maintenance

Continuing IT build as before will yield more and more complexity and thus increase
build and maintenance costs. In times of cost reduction and frozen IT budgets this will
lead to a dead lock in innovation and functionality enhancement.

Build share of IT
B Run/ maintenance share of IT budget

Total IT budget ! Total IT budget

11“‘

Time Time

Do-Nothing-Alternative Restructuring supported by Enterprise Architecture

To achieve an improved and improving build / run cost ratio an initial invest is
inevitable, because the restructuring of the IT landscape needs concepts and projects
for complexity reduction and the setup of new, cost efficient and flexible solutions.

Universiteit Antwerpen _

Innovation
U (Complexity & Change)

| e o &.)@

AR

: Normalized
Epterprise Enferprise
Architectures EA Architectures

.... === System
“= = Development
~ = =-5==:: Methodologies o’

\ BP / 2009

Combinatorial Effects

Universiteit Antwerpen _

U' An Indication: IT Vagueness

e Different opinions about ‘good’ design

- “Low coupling” is too vague !
- “Information hiding” was formulated by Parnas in
1972, but still needs to be refined

- Philippe Kruchten (2005): "We haven’t found the
fundamental laws in software like in other engineering

disciplines”

e [ow coupling and high cohesion. Everybody
knows this. The question is how to do this.

Universiteit Antwerpen _

U' An Indication: IT Vagueness

1 : registerPayment) —a= 1.1 : create) —a=
:Reqgister {p:Payment

1.2 : addPayment (p) —a=

1 : registerPayment() —am- 1.1 : registerPayment{
‘Reqister Sale

1.1.1 :createﬂ*

:Payment

Universiteit Antwerpen _

U' An Indication: Some Thoughts

e Design, the mapping from functional requirements
to constructive primitives, is a complex activity,
e.g. designing a car based on use cases.

It cannot be done on a 1-1 basis.

e Modularity in other disciplines, like hardware and
aerospace, is static modularity. It does not
accomodate continuous changes.

We require evolvable modularity.

Universiteit Antwerpen _

o

BROADENING THE SCOPE

Universiteit Antwerpen

U" Controlling Complexity
by modularity can be done ...

Other disciplines have mastered the
structured assembly of large numbers
of fine-grained static modules... e.g. hardware !

Universiteit Antwerpen —

veweLs sTATION v

ety

erens

SPACECRAFT (NoRTH AMERICAN AVIATION.

LEs JETTISON MOTOR B LAUNCA ESCAPE BYSTEM

LS LAUNCH £8CARE TOWER
CoMMAND MEBULE

coumMAND PILOT
‘SENIOR PILAT
ot

CARRY 0K UMBILIGAL
FLY AWAY UMBILIGAL

Fy CRYBAENIC STORAGE TANK

wsn
e

LUNAR MODULE eamusinian AIRGRAFT ENGINEERING)

RCS THRUSTER ABSEMBLY 4 PLACES
L /M UB BER BOCKING TUNNEL

Lm AscENT sTABE

LM DEscENT sTAGE

L/M LANG NG GEAR 4 PLACES

.

INSTRUMENT UNIT_csmwa-

S-IVE movacas)
Ly TANK vENT
ACCESS FLATFORM SUSRORT FITTING
ANTENNAS CENTERLINE

CoLE HELIM SPHERES)

However:

LK Liy FILL AND BRAI
RETRO RGCKET 1 PLAGES)

BATTOM OF AFT sRIAT
ACEESS BLATFORM SURRGRT FITTING

mz

e
aan

"

2w e Tam
maes wem saw

ST (omTw AmERIGAN AVIATION

svaTEMS TuNNEL

NeHES peTEms

Loy vy
511 Tor FoRwARD SKIAT B G
RADID COMMANG ANTENNA 4 FLAGES
TELEMETAY ANTENNA 4 PLACES .
Lex ANk
LoxX PRORELLANT MANACEMENT PROBE
NG SLoSH BAFFLE wm
Li, REGIRGULATION SvSTEM 5 macES en0
b PILL & DA n.w
Bivision oF ArT sximT .00
Tor ar AFY T wioco sm.cos 1.0
BOTTOM oF sLOSH BAFFLE s
OB LLLAGE ROCKET FAIRING MOTOR e
ToR oF THRUST CoNE a0
BoTTOM oF THAUST conE w2
TTC moeina
B roRwARD SxiT e B oD

RING sLosk BarrLEs

LowER SECTION OF HELIUM BOTTLES (4

TEP OF INTERTANK ASSEMBLY

FUEL VENT Like
boow wan 30D
LOX FILL & DRAIN FAR §i08)

Modularity
IS static

LoX FLL 8 DRAIN IFAR S0

BOTTOM OF INTERTANK ASSEMBLY

SLoSH BAFFLES

FuBL FILL & DRAIN

RETRO ROGKETS 2 EACH 4 PLACES!

BOTTOM oF FUEL TANK

BOTTOM BF £-1 ENGINE {8 PLACES)

Universiteit Antwerpen

23,00

5.8

came
NOTE: 5-IC STAGE ROTATED &
COUNTER CLOCKWISE
FOR CLARITY

omeTRIC SCALE
"o =

SERCECRAFT

vewcLE sTaTions incirs weTens

vemcLE sTATION a0, w010
BASE OF CONARD NOSE CONT . awym 0,
CENTERLINE LAUNGH ESCARE MOTOR s
#oTTOM oF LES SKIAT 90,585
Tor o Bosst covem sy W
vemcLe sepanamion o erae

AFT WEAT swiELn
REACTION CONTROL SYSTEM MODULE
VEHICLE STATION FLIGHT SEPARATIGN

RENDEIVOUS RADAR ANTENNA
Lunan MeouLE
L/M FORWARD BOCKING TUNNEL

LEHCLE SEPARATION 40,01
VeicLe sTaTion ans.

INSTRUMENT UNIT
SVE

Tor romwano skinT

e R
INSTRUMENT UNIT BOTYOM 322256 81813

BOTTOM OF FORWARD SKINT T

FuBL ass sexson mRosE
INSTRUAMENTATION PRORE

AUKILIARY BROPULSION SYSTEM (ARS) @)

Lox venT PR sE e eom M sam

HELIUM SPHERES (3 PLACES)

Tor 41 EnGINE awesm erave 0.00 bae
+2 Ename
sOTTOM - 1vB TOR -1 25,00

BOTTOM OF FORWARD SKINT
Li, PROPELLANT MANAGEMENT PROBE

-

uRizATION MAST

Lox vewt Line

TOR OF Li, FERD FAINING 3 PLACES a an
Lox TAMK EauATOR wa e

LoX FiLL & BRAIN FAR SR me sasr
crucironm BAsFLE s me
BOTTOM L, FEED FAIRING maon s
ey seeanavion mvoe 204 meon dame
G PLANE. oo e
BOTTOM ULLAGE & M FAIRING ERTI—

2 Eweanes (s macEs)

&

FLiGkT sEmARATION
Lox venT
cox Line

¥ e

PRESSURIZATION TUNNEL @ FLACES)

LOX FEED LINE TUNKEL (5 PLACES!

¥ e o

BOTTOM OF LOX TANK =
TOR OF FUEL TANK o200
FUEL PRESSURE Line w200

¥ ming 05,0

ToR oF ENGINE FAIRING 200

o oF THAuST STRUCTURE a7

NTERCONMEST LOX DRAIN no.m

e FARING ans

HAUST STRUCTURE 9.0 20w

wo.m 2.sa8

e SSUFEINE conrari
SPAGE DIVISION, LAUNGH BTET D43 BRANCH
HUNTEVILLE, ACA Sawer

BATURN v APOLLD
FLIGHT CONFIGURAT IoH

U' Some more examples

e Airbus 380 could not be designed by taking x2
for every measure of the Airbus 340 plan

e Instruction set of a microprocessor cannot be
extended by adding another module

e Construction buildings cannot grow over time
by simply adding additional units

e Car performance cannot be upgraded by
adding additional parts to the engine

Universiteit Antwerpen _

L3 Evolvability: The Main Issue

Static Modularity Complexity

Increasing Change

Lehman, No Mcllroy

Universiteit Antwerpen —

U-' Systems Theory = Evolvability

e Stability in System Dynamics:

- In systems theory, the dynamic evolution of a
system is studied based on a differential or
difference equation

- A system is stable if and only if:

e a bounded input results in a bounded output

e it has poles in the left plane or inside the unit circle:
- For a first order model, stability €= a<O0:

+ dy(t)/dt = x(t) 4Q@y(EDED Y(s)/X(s) = 1/(s-a)

o y[k+1]-y[K] = X[K] +(--) Y(z)/X(z) = 1/(z-(1+3a))
- This means that the increase cannot have a

positive contribution from the size of the system

Universiteit Antwerpen —

U-' Systems Theory = Evolvability

e Stability in system dynamics:

- Is used to study dynamics of system operations
e Mechanical, e.g. constructions, vehicles, ...
e Electrical, e.g. amplifiers, generators, ...
e Hydraulical, e.g. pumps, engines, ...

- Is not used to study dynamics of system artefacts
e Rockets and airplanes
e Software and information systems
e Organizations and human enterprises

Universiteit Antwerpen —

U- IT: Enterprise Service Bus

e The effort to include an additional component
may or may not vary with the system size
or: airline spoke and hub

()

Impact =N Impact =1

Source: http://nl.wikipedia.org/wiki/Enterprise_Service_Bus

Universiteit Antwerpen —

o

EVOLVABILITY PRINCIPLES

Universiteit Antwerpen

U' The Transformation Model

e Study the transformation of functional
requirements into software primitives as a

transformation:
5 = 1(R).

e Consider the functional requirements at an
extremely basic hierarchical level:
- Data structures and processing tasks
- Software coding in its elementary form
- Implicit in every realistic software system

e Study the transformation of changes

Universiteit Antwerpen —

A Simple Transformation

Invoice

-Nr
Data Date

Change:
addAttribute

Customer
-Name

-Address
-VATnr

computelnvoice

Tasks

inviteCustomer

sendlnvoice

Universiteit Antwerpen

Sm = 4(Dm)

Struct Invoice
-Nr
- Date

Struct Customer
- Name

- Address

- VATnr

F, = 1(P,)

Func computelnvoic

Func inviteCustomer]

Func sendlInvoicé

U' A Simple Transformation

e Demanding systems theoretic stability for this
transformation, leads to the derivation of
principles in line with existing heuristics:

Sm= 5\ 8 = L(R) U[35.

To obtain a scalar equation, we use cardinalities of sets and a coefficient a:

18] = |8¢] — 18] = |4(Rp)|

or using the discrete variable k to represent ongoing development iterations:

|AS] = [8lk + 1]| — [8[k]| = [L(Rm[k])| +[ﬂ[k]If3[k]|J

Universiteit Antwerpen —

U' Action Version Transparency

ki) Fr

w=b

IMPACT

S = 1(Rp) U[{F,(un 12)} Ly, ,_}

Universiteit Antwerpen

U' Separations of Concerns

Fn Fn Fn

Universiteit Antwerpen _

U' Separate an Unidentified Task

Fp, Fr Fp

W=a W= W=C

13] }

Fig. 2. Various functions F with a single task as an unidentified change driver.

Universiteit Antwerpen —

U' Normalized Systems Principles

e Modularity x Change = Combinatorial Effects (CE) !

- CE = (hidden) coupling or dependencies, increasing with
size of the system !

- NS Principles identify CE at seemingly orthogonal levels
e SoC: Which tasks do you combine in a single module ?
“An action entity can only contain a single task.”

e DVT: How do you combine a data and action module ?

- "“Data entities that are received as input or produced as output by action entities,
need to exhibit version transparency.”

e AVT: How do you combine 2 modules ?

- "“Action entities that are called by other action entities, need to exhibit version
transparency.”

e S0S: How do you combine modules in a workflow ?

‘l;The_caIIing of an action entity by another action entity needs to exhibit state
eeping.”

- =>» CE are due to the way tasks, action entities and data
entities are combined or integrated !

Universiteit Antwerpen —

U' Combinatorial Effects

Current constructs allow CE

1l

“Any developer that violates any principle at any time
during development or maintenance”

1l

CE omnipresent,
during development and ever
increasing during maintenance !

Universiteit Antwerpen —

U' Normalized Systems Principles

e Are not new:

- They are consistent with heuristic design knowledge

- However, the way in which they are derived from a
single postulate is new

e Presented principles solve the vagueness in
identifying combinatorial effects:

- Until now, no clear principles
e =>» subjectivity, ad hoc

- Mcllroy: “to be constructed on rational principles”
e Conclusion
- Omnipresent CE = No evolvable modularity !

Universiteit Antwerpen _

o

TOWARDS EVOLVABLE ELEMENTS

Universiteit Antwerpen

U' A necessary condition:
Fine-grained Modular Structure

E.g. SoC: a module can know only 1 technology
= for every technology, a different module is required !

Universiteit Antwerpen _

A Simple Transformation

Invoice

-Nr
Data Date

Change:
addAttribute

Customer
-Name

-Address
-VATnr

computelnvoice

Tasks

inviteCustomer

sendlnvoice

Universiteit Antwerpen

Sm = 4(Dm)

Struct Invoice
-Nr
- Date

Struct Customer
- Name

- Address

- VATnr

F, = 1(P,)

Func computelnvoic

Func inviteCustomer]

Func sendlInvoicé

U' A More Complex Transformation

Anthropomorphism

Sepa ration

Invoice
Access

Invoice
Data

Invoice
Nr e.g. Java classes

-Date

Invoice

Details
Invoice } Invoice
Validity Bean
Invoice
Proxy

Concerns

Universiteit Antwerpen

U-' A More Complex Transformation

IMPACT

Invoice
-Nr
_D to

IMPACT

‘H‘
4 Invoice ’LA
Element
{

N

Change:

addAttribute

IMPACT

Data ‘

Customer ‘> 4‘

_ Customer

Nr 4 Element, >

-Date > 4

compute
computelnvoice 4 Invoice)
.m

TaSkS inviteCustomer

invite ‘
Customer
‘;

sendlnvoice

4 Invoice
R
Universiteit Antwerpen _

U' Normalized Systems Elements

e The proposed solution =

- Structure through Encapsulations, called Elements

e A Java class is encapsulated in 8-10 other classes, dealing with
cross-cutting concerns, in order to deal with the anticipated
changes without CE, and fully separating the element from all
other elements.

e Every element is described by a “detailed design pattern”. Every
element builds on other elements.

e Every design pattern is executable, and can be expanded
automatically.

- Realizing the core functionality of Information Systems
e Application = n instantiations of Elements

Universiteit Antwerpen _

U-' Instantiating Elements

Requirements > Data ;]Action# Vﬁ‘;ﬁ nce‘é?grl Trigger \ Elements
L L L L L
l l l l l Expansion

NS Application

n Instances
of Elements

Universiteit Antwerpen _

L3 Evolvability: The Main Issue

Static Modularity Complexity

Increasing Change

Lehman, No Mcllroy

Universiteit Antwerpen —

|9~ Evolvability: The Main Issue

Static Modularity = Evolvable Modularity

Engineering to Combat Change

Ever increasing complexity ! Not straightforward, but true Engineering,
and Determinism !

Universiteit Antwerpen

U' The Final Goal: Determinism

o Systematic elimination of CE, using fine-grained modular
structures such as Elements, while controlling their inherent
complexity, leads to determinism:

All applications have similar fine-grained software
architecture
= product line or product factory

Impact analysis
Correctness

Reliability and Performance
Traceable execution

Universiteit Antwerpen _

o

FACTS, THOUGHTS AND DREAMS

Universiteit Antwerpen

U' Knowledge: Contributions

e Contributions to insight into current problems
- Proposing a mechanism of Lehman’s Law
- Explaining why software reuse is so difficult
- Linking evolvability issues to non-software

e Proposing the structure of a possible solution
- Software elements to guarantee evolvability
- Applications as instantiations of elements

Universiteit Antwerpen _

Knowledge: The Vision

Larman’s GRASP Anti-patterns

)
patterns Fowler’s bad code smells

Manifestations in traditional software engineering
Manifestations 2 From separate workflow to ESB (design patterns) , polymorfism,
data encapsulation, multi-tier architectures, messaging, ...

=

Manifestations 1 Interface Stability Encapsulated Aggregation Instance Traceability
DvT - AvT SoC - SoS DIiT-AIT

=~

7k

Concepts/ Systems theory- Therngofynamics-
. ntropy
Theory (;:zglgs) (#microstates)
S Z

Normalized Evolvable modularity

Systems

D(;sign Controllability D(Fesign
or or

Generic Change Testing

Engineering

Reduce complexity dr bottom-up BB

Universiteit Antwerpen

U- Valorization: The Model

Flemish
/ Government

MoU,
May 17, 2011

Province
Antwerp

N

Capgemini
Netherlands

RealDolmen

Universiteit Antwerpen

U' Valorization: Achievements

e Community codebase of element expanders:
- Application stack in EJB2 and EJB3
- Presentation stack in Cocoon and Struts?2
- Client interactivity stack in Knockout/Bootstrap

e Applications made by the partners:
- >20 currently in production
- >10 in acceptance testing
- Specified in detail by elements and extensions

Universiteit Antwerpen n

U-' The Future: Dreams

e Pursue existing software efforts:
- More partners and applications
- Rejuvenation application portfolio
e New areas now being initiated:
- Business processes
- Industrial controllers
- Smart energy grids

e Maybe one day followers:
- Rockets and airplanes

- Buildings, cars, ...

Universiteit Antwerpen —

Some References

o De Bruyn Peter, van Nuffel Dieter, Verelst Jan, Mannaert Herwig.- Towards applying normalized
systems theory implications to enterprise process reference models. Lecture notes in business
information processing - ISSN 1865-1348 - 110(2012), p. 31-45
http://dx.doi.org/10.1007/978-3-642-29903-2 3
[c:irua:98376]

e Mannaert Herwig, Verelst Jan, Ven Kris.- Towards evolvable software architectures based on
systems theoretic stability. Software practice and experience - ISSN 0038-0644 - 42:1(2012), p.
89-116
http://dx.doi.org/doi:10.1002/spe.1051

o Mannaert Herwig, Verelst Jan, Ven Kris.- The transformation of requirements into software
primitives : studying evolvability based on systems theoretic stability. Science of computer
programming - ISSN 0167-6423 - 76:12(2011), p. 1210-1222
http://dx.doi.org/doi:10.1016/j.scico.2010.11.009
[c:irua:91112]

e van Nuffel Dieter, Mannaert Herwig, de Backer Carlos, Verelst Jan.- Towards a deterministic
business process modelling method based on normalized systems theory. International journal
on advances in software - ISSN 1942-2628 - 3:1/2(2010), p. 54-69
[c:irua:83738]

Universiteit Antwerpen n

U' Some Questions

e herwig.mannaert@ua.ac.be

Universiteit Antwerpen

