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U' About Normalized Systems

e A theoretical framework to gain insight into the
behaviour of modular structures under change, and
aiming at the design of evolvable modular structures

- Initial scope: Modular Structures in Software Architectures

- Based on modularity instead of software techmologies
e = Completely independent of any framework, programming language,

e Has shown to be able to deal with the challenge of increasing complexity
- E.g. hardware, Internet, space industry...

- Grounded in systems theoretic concepts

- Publications: book, >40 (journals + conference proceedings),
(invited) lectures at different universities ...

- Education: undergraduate, postgraduate... Normalized




o

AN INCONVENIENT TRUTH
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U-' The Dream: Doug Mc Ilroy

“expect families of routines to be constructed on rational
principles so that families fit together as building blocks”

uit: Mcllroy, Mass Produced Software Components,
1968 NATO Conference on Software Engineering, Garmisch, Germany.
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U' The Reality: Manny Lehman

The Law of Increasing Complexity
Manny Lehman

“As an evolving program is continually changed, its complexity,
reflecting deteriorating structure, increases unless work is done
to maintain or reduce it.”

Proceedings of the IEEE, vol. 68, nr. 9, september 1980, pp. 1068.
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U' An Indication: IT Maintenance

Continuing IT build as before will yield more and more complexity and thus increase
build and maintenance costs. In times of cost reduction and frozen IT budgets this will
lead to a dead lock in innovation and functionality enhancement.

Build share of IT
B Run/ maintenance share of IT budget

Total IT budget ! Total IT budget

11“‘

Time Time

Do-Nothing-Alternative Restructuring supported by Enterprise Architecture

To achieve an improved and improving build / run cost ratio an initial invest is
inevitable, because the restructuring of the IT landscape needs concepts and projects
for complexity reduction and the setup of new, cost efficient and flexible solutions.
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U' An Indication: IT Vagueness

e Different opinions about ‘good’ design

- “Low coupling” is too vague !
- “Information hiding” was formulated by Parnas in
1972, but still needs to be refined

- Philippe Kruchten (2005): "We haven’t found the
fundamental laws in software like in other engineering

disciplines”

e [ow coupling and high cohesion. Everybody
knows this. The question is how to do this.
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U' An Indication: IT Vagueness

1 : registerPayment) —a= 1.1 : create) —a=
:Reqgister {p:Payment

1.2 : addPayment (p)  —a=

1 : registerPayment() —am- 1.1 : registerPayment{
‘Reqister Sale

1.1.1 :createﬂ*

:Payment
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U' An Indication: Some Thoughts

e Design, the mapping from functional requirements
to constructive primitives, is a complex activity,
e.g. designing a car based on use cases.

It cannot be done on a 1-1 basis.

e Modularity in other disciplines, like hardware and
aerospace, is static modularity. It does not
accomodate continuous changes.

We require evolvable modularity.
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BROADENING THE SCOPE
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U" Controlling Complexity
by modularity can be done ...

Other disciplines have mastered the
structured assembly of large numbers
of fine-grained static modules... e.g. hardware !
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U' Some more examples

e Airbus 380 could not be designed by taking x2
for every measure of the Airbus 340 plan

e Instruction set of a microprocessor cannot be
extended by adding another module

e Construction buildings cannot grow over time
by simply adding additional units

e Car performance cannot be upgraded by
adding additional parts to the engine
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L3 Evolvability: The Main Issue

Static Modularity Complexity

Increasing Change

Lehman, No Mcllroy
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U-' Systems Theory = Evolvability

e Stability in System Dynamics:

- In systems theory, the dynamic evolution of a
system is studied based on a differential or
difference equation

- A system is stable if and only if:

e a bounded input results in a bounded output

e it has poles in the left plane or inside the unit circle:
- For a first order model, stability €= a<O0:

+ dy(t)/dt = x(t) 4Q@y(EDED Y(s)/X(s) = 1/(s-a)

o y[k+1]-y[K] = X[K] +(--) Y(z)/X(z) = 1/(z-(1+3a))
- This means that the increase cannot have a

positive contribution from the size of the system
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U-' Systems Theory = Evolvability

e Stability in system dynamics:

- Is used to study dynamics of system operations
e Mechanical, e.g. constructions, vehicles, ...
e Electrical, e.g. amplifiers, generators, ...
e Hydraulical, e.g. pumps, engines, ...

- Is not used to study dynamics of system artefacts
e Rockets and airplanes
e Software and information systems
e Organizations and human enterprises
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U- IT: Enterprise Service Bus

e The effort to include an additional component
may or may not vary with the system size
or: airline spoke and hub

()

Impact =N Impact =1

Source: http://nl.wikipedia.org/wiki/Enterprise_Service_Bus
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EVOLVABILITY PRINCIPLES

Universiteit Antwerpen



U' The Transformation Model

e Study the transformation of functional
requirements into software primitives as a

transformation:
5 = 1(R).

e Consider the functional requirements at an
extremely basic hierarchical level:
- Data structures and processing tasks
- Software coding in its elementary form
- Implicit in every realistic software system

e Study the transformation of changes
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A Simple Transformation

Invoice

-Nr
Data Date

Change:
addAttribute

Customer
-Name

-Address
-VATnr

computelnvoice

Tasks

inviteCustomer

sendlnvoice
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Sm = 4(Dm)

Struct Invoice
-Nr
- Date

Struct Customer
- Name

- Address

- VATnr

F, = 1(P,)

Func computelnvoic

Func inviteCustomer ]

Func sendlInvoicé




U' A Simple Transformation

e Demanding systems theoretic stability for this
transformation, leads to the derivation of
principles in line with existing heuristics:

Sm= 5\ 8 = L(R) U[35.

To obtain a scalar equation, we use cardinalities of sets and a coefficient a:

18] = |8¢] — 18] = |4(Rp)|

or using the discrete variable k to represent ongoing development iterations:

|AS] = [8lk + 1]| — [8[k]| = [L(Rm[k])| +[ﬂ[k]If3[k]|J
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U' Action Version Transparency

ki ) Fr

w=b

IMPACT

S = 1(Rp) U[{F,(un 12)} Ly, ,_}
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U' Separations of Concerns

Fn Fn Fn
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U' Separate an Unidentified Task

Fp, Fr Fp

W=a W= W=C

13 ] }

Fig. 2. Various functions F with a single task as an unidentified change driver.
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U' Normalized Systems Principles

e Modularity x Change = Combinatorial Effects (CE) !

- CE = (hidden) coupling or dependencies, increasing with
size of the system !

- NS Principles identify CE at seemingly orthogonal levels
e SoC: Which tasks do you combine in a single module ?
“An action entity can only contain a single task.”

e DVT: How do you combine a data and action module ?

- "“Data entities that are received as input or produced as output by action entities,
need to exhibit version transparency.”

e AVT: How do you combine 2 modules ?

- "“Action entities that are called by other action entities, need to exhibit version
transparency.”

e S0S: How do you combine modules in a workflow ?

‘l;The_caIIing of an action entity by another action entity needs to exhibit state
eeping.”

- =>» CE are due to the way tasks, action entities and data
entities are combined or integrated !
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U' Combinatorial Effects

Current constructs allow CE

1l

“Any developer that violates any principle at any time
during development or maintenance”

1l

CE omnipresent,
during development and ever
increasing during maintenance !
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U' Normalized Systems Principles

e Are not new:

- They are consistent with heuristic design knowledge

- However, the way in which they are derived from a
single postulate is new

e Presented principles solve the vagueness in
identifying combinatorial effects:

- Until now, no clear principles
e =>» subjectivity, ad hoc

- Mcllroy: “to be constructed on rational principles”
e Conclusion
- Omnipresent CE = No evolvable modularity !
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TOWARDS EVOLVABLE ELEMENTS
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U' A necessary condition:
Fine-grained Modular Structure

E.g. SoC: a module can know only 1 technology
= for every technology, a different module is required !
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A Simple Transformation

Invoice

-Nr
Data Date

Change:
addAttribute

Customer
-Name

-Address
-VATnr

computelnvoice

Tasks

inviteCustomer

sendlnvoice
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Sm = 4(Dm)

Struct Invoice
-Nr
- Date

Struct Customer
- Name

- Address

- VATnr

F, = 1(P,)

Func computelnvoic

Func inviteCustomer ]

Func sendlInvoicé




U' A More Complex Transformation

Anthropomorphism

Sepa ration

Invoice
Access

Invoice
Data

Invoice
Nr e.g. Java classes

-Date

Invoice

Details
Invoice } Invoice
Validity Bean
Invoice
Proxy

Concerns
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U-' A More Complex Transformation

IMPACT

Invoice
-Nr
_D to

IMPACT

‘H‘
4 Invoice ’LA
Element
{

N

Change:

addAttribute

IMPACT

Data ‘

Customer ‘> 4‘

_ Customer

Nr 4 Element, >

-Date > 4

compute
computelnvoice 4 Invoice )
.m

TaSkS inviteCustomer

invite ‘
Customer
‘;

sendlnvoice

4 Invoice
R
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U' Normalized Systems Elements

e The proposed solution =

- Structure through Encapsulations, called Elements

e A Java class is encapsulated in 8-10 other classes, dealing with
cross-cutting concerns, in order to deal with the anticipated
changes without CE, and fully separating the element from all
other elements.

e Every element is described by a “detailed design pattern”. Every
element builds on other elements.

e Every design pattern is executable, and can be expanded
automatically.

- Realizing the core functionality of Information Systems
e Application = n instantiations of Elements
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U-' Instantiating Elements

Requirements > Data ;]Action# Vﬁ‘;ﬁ nce‘é?grl Trigger \ Elements
L L L L L
l l l l l Expansion

NS Application

n Instances
of Elements
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L3 Evolvability: The Main Issue

Static Modularity Complexity

Increasing Change

Lehman, No Mcllroy
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|9~ Evolvability: The Main Issue

Static Modularity = Evolvable Modularity

Engineering to Combat Change

Ever increasing complexity ! Not straightforward, but true Engineering,
and Determinism !
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U' The Final Goal: Determinism

o Systematic elimination of CE, using fine-grained modular
structures such as Elements, while controlling their inherent
complexity, leads to determinism:

All applications have similar fine-grained software
architecture
= product line or product factory

Impact analysis
Correctness

Reliability and Performance
Traceable execution
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o

FACTS, THOUGHTS AND DREAMS
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U' Knowledge: Contributions

e Contributions to insight into current problems
- Proposing a mechanism of Lehman’s Law
- Explaining why software reuse is so difficult
- Linking evolvability issues to non-software

e Proposing the structure of a possible solution
- Software elements to guarantee evolvability
- Applications as instantiations of elements
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Knowledge: The Vision

Larman’s GRASP Anti-patterns

)
patterns Fowler’s bad code smells

Manifestations in traditional software engineering
Manifestations 2 From separate workflow to ESB (design patterns) , polymorfism,
data encapsulation, multi-tier architectures, messaging, ...

=

Manifestations 1 Interface Stability Encapsulated Aggregation Instance Traceability
DvT - AvT SoC - SoS DIiT-AIT

=~

7k

Concepts/ Systems theory- Therngofynamics-
. ntropy
Theory (;:zglgs) (#microstates)
S Z

Normalized Evolvable modularity

Systems

D(;sign Controllability D(Fesign
or or

Generic Change Testing

Engineering

Reduce complexity dr bottom-up BB
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U- Valorization: The Model

Flemish
/ Government

MoU,
May 17, 2011

Province
Antwerp

N

Capgemini
Netherlands

RealDolmen
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U' Valorization: Achievements

e Community codebase of element expanders:
- Application stack in EJB2 and EJB3
- Presentation stack in Cocoon and Struts?2
- Client interactivity stack in Knockout/Bootstrap

e Applications made by the partners:
- >20 currently in production
- >10 in acceptance testing
- Specified in detail by elements and extensions
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U-' The Future: Dreams

e Pursue existing software efforts:
- More partners and applications
- Rejuvenation application portfolio
e New areas now being initiated:
- Business processes
- Industrial controllers
- Smart energy grids

e Maybe one day followers:
- Rockets and airplanes

- Buildings, cars, ...
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U' Some Questions

e herwig.mannaert@ua.ac.be
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