
 

24 March 2013 

Lisboa 

Service Components and Ensembles: Building Blocks for 

Autonomous Systems  

                                                     - tutorial -  

 

Nikola B. Šerbedžija 

ICAS 2013 The Ninth International Conference on Autonomic and 

Autonomous Systems 



Nikola  Šerbedžija,  2 

Outline 
I. Introduction (definition, abstract, motivation, approach) 

II. Requirements analyses 

• Practical examples 

• Requirements 

III. Modeling 

• Approach  

• SCEL 

• Adaptation patterns 

• Reasoning on system properties 

IV. Deployment  

- JRESP 

- Implementation framework 

V. Conclusion (discussion and further work) 

 

𝜲 

c
a
s
e
 s

tu
d

ie
s
 



Nikola  Šerbedžija,  3 

au·ton·o·mous [aw-ton-uh-muhs]  

 adjective  

1. Government . 

a.  self-governing; independent; subject to its own laws only.  

b. pertaining to an autonomy.  

2. having autonomy; not subject to control from outside; 
independent: a subsidiary that functioned as an autonomous unit.  

3. Biology .  

a. existing and functioning as an independent organism.  

b. spontaneous.  

 Origin: Greek autónomos  with laws of one's own, independent, 
equivalent to auto- … 

 

I. Definition: Autonomous 
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I. Definition  Autonomous systems 

 Within the Internet, an Autonomous System (AS) is a collection of connected 

Internet Protocol (IP) routing prefixes under the control of one or more network 

operators that presents a common, clearly defined routing policy to the Internet. 

 

 “Autonomous systems represent the next great step in the fusion of machines, 

computing, sensing, and software to create intelligent systems capable of interacting 

with the complexities of the real world. Autonomous systems are the physical 

embodiment of machine intelligence”.  

 

 Autonomous systems with multiple sensory and effector modules face the problem of 

coordinating these components while fulfilling tasks such as moving towards a goal 

and avoiding sensed obstacles.  

 

 Deals with adaptation, intelligence, sensing, robotics, agent technology, self-

organization, dynamic and independent behavior, awareness, Pervasive services and 

mobile computing, self-management context-aware systems, no human intervention. 

𝜲 
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Conference on Autonomic and Autonomous Systems 

AUTSY: Theory and Practice of Autonomous Systems 

 

 Design, implementation and deployment of autonomous systems; 
Frameworks and architectures for component and system autonomy; 
Design methodologies for autonomous systems; Composing 
autonomous systems; Formalisms and languages for autonomous 
systems; Logics and paradigms for autonomous systems; Ambient 
and real-time paradigms for autonomous systems; Delegation and trust 
in autonomous systems; Centralized and distributed autonomous 
systems; Collocation and interaction between autonomous and non-
autonomous systems; Dependability in autonomous systems; 
Survivability and recovery in autonomous systems; Monitoring and 
control in autonomous systems; Performance and security in 
autonomous systems; Management of autonomous systems; Testing 
autonomous systems; Maintainability of autonomous systems 
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TAAS 

 Many current Information and Communications Technology (ICT) 
systems and infrastructure, such as  

• the Web, Clouds, Grids and Enterprise Datacenters, Peer-to-Peer 
Systems, Social and Urban Computing Systems, Cooperative 
Robotic Systems, Distributed Service Systems, and Wireless and 
Mobile Computing Systems,  

 have the characteristic of being  

• decentralized, pervasive, and composed of a large number of 
autonomous entities.  

 Often systems deployed on such infrastructure need to run in highly 
dynamic environments, where physical context, social context, network 
topologies and workloads are continuously changing. As a 
consequence, autonomic and adaptive behaviors become necessary 
aspects of such systems. 
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EU, FP7 Awareness Initiative: Challenges 

 

•101 Awareness Challenges 

•72. To have good and sustainable test bed and test environment for experiments. Nenad Stojnic 

•71. Introducing economic models. Ivova Brandic 

•70. Monitoring of large scale adaptive infrastructures and mobile devices. Ivova Brandic 

•69. To disambiguate the awareness concepts. Ramana Reddy 

•68. Checking, requirements, model, verification and validation at runtime. Hausi Muller 

•67. Representation and synchronization of requirements at runtime. Nelly Bencomo 

•66. To address real problems by means of exemplars. Luciano Baresi 

•65. To have intelligent runtime environments that support adaptation, keeping and managing the model also at runtime. Carlo Ghezzi 

•64. To exploit a graphical language in order to achieve automatic generation of engines. Tom Keeley 

•63. To have an appropriate mathematical base. Franco Bagnoli 

•62. To enable adaptive systems to learn online. Peter Lewis 

•61. How to describe and to compare information? Yvonne Bernard 

•60. How to ensure safety and correctness? Manuele Brambilla 

•59. How to manage the relationship between individual and group levels? Carlo Pinciroli 

•58. How to achieve adatpivity at runtime? Martin Wirsing 

•57. How to engineer decision systems? Henry Bensler 

•56. How to map raw data to knowledge? Emil Vassev 

•55. Dealing with high and low levels of contexts. Wei Dai 

•54. Considering sociological aspects besides technical aspects. Francois Toutain 

•53. Letting different systems interoperate and collaborate. Guillame Dugue 

•52. How to measure the level of awareness? E.g. the number of variables AND the algorithm that processes the information from the variables. Gusz Eiben 

•51. Measuring and finding metrics for the different kinds of awareness. Franco Zambonelli 

•50. The difficulty of writing precise requirements about flexibility. Peter Lewis 

•49. The difficulty of proving all the properties of an emergent system. Jose Luis Fernandez 

•48. How to improve the communication between local and global systems in swarm robotics?: Matthias Holzl 

•47. Monitoring and controlling emergent properties and specifying and controlling adaptation: Martin Wirsing 

•46. How to know whether a system is aware and the issue of global and local awareness: Rocco De Nicola 

•45. How can services understand what they really need?: Gabriella Castelli 

•44. How do we formally understand what trust is?: Alois Ferscha 

•43. How robot controllers (mind) and mechanical parts (body) can co-evolve? : Evert Haasdijk 

•42. Using competition across the fields to push the research further and faster: Julie McCann 

•41. How is this research going to contribute to the challenges of global warming and sustainability?: Jeremy Pitt 

•40. To have efficient computation: Frederic Gruau 

•39. How modeling can be considered in the development: Alan Brook 

•38. To bring together experimental and theoretical communities: Colette Johnen 

•37. To develop ubiquitous platforms: Stefan Dulman 

•36. Adaptability, evolvability, diversity, spatiality: Akla-Esso Tchao 

•35. To have an operation definition of self-awareness: Giuseppe Valetto 

•34. What actually is a self-organising system and how to build it? Ingo Scholtes 

•33. To model the context and to validate the model itself: Daniel Dubois 

•32. To define real grounded application scenarios: Marco Mamei 

•31. Definition and metrics of self-awareness: Paul Snyder 

•30. How to engineer the system to produce the correct emergent behavior? Christopher Hollander 

•29.To make systems actually know what happens inside them: Rolf Kiefhaber 

•28. How can we say that a system is self-aware? Peter Lewis 

•27. Collective self-awareness from not self-aware components: Peter Lewis 

•26. Systems that exhibit self-awareness as emerging properties: Peter Lewis 

•25. How do components make themselves aware of the surrounding (open) environment?: Xinghui Zhao 

•24. To analyze the emerging patterns in evolving behaviors: Andres Ramirez 

•23. To be aware of what awareness actually means: Jean Botev 

•22. To be aware of neighbours: Venkatraman Iyer 

•21. To combine computer science with social science: Frank Schweitzer 

•20. How to make aware components behave to reach a global optimum? Julia Shaumeier 

•19. How we can learn from human self-awareness? Nils Rosemann 

•18. To develop techniques to control self-organization: Holger Prothmann 

•17. To model, test and verify self-aware systems: Giovanna di Marzo Serugendo 

•16. To bring computers near a level where humans are, not humans down: Glen Fink 

•15. To define when autonomic systems are beneficial or detrimental to a given domain or application: Cortney Riggs 

•14. To develop methodologies and tools to engineer systems: Sven Bruckner 

•13. To build a better theory to analyze the data from the models and from real world: Sven Bruckner 

•12. To build better models to understand the basic principles of self-*: Sven Bruckner 

•11. Grand challenge in Self-Awareness? Real-world apps, with real hard requirements - best research driver there is! Tom Holvoet 

•10. Find construction rules of artificial self-aware systems by revealing the common core in natural collective systems: Thomas Schmickl 

•9. Evolving the step from environmental awareness to self-awareness: Thomas Schmickl 

•8. The role of conservation laws in collective awareness-exchange of mass & energy vs. exchange of information: Thomas Schmickl 

•7. Evolving a collective system that exhibits self-awareness and environmental awareness from scratch: Thomas Schmickl 

•6. Sensors, sensors, sensors: given the volume of interesting data available, how can services understand what they need: SAPERE 

•5. In systems with dynamic service composition, how can we achieve system-level self-awareness of service components? Giacomo Cabri 

•4. Create collective embodied systems where self-healing emerges in response to adverse internal/external conditions: Jon Timmis 

•3. Incentivising users to cooperate by providing access to location data/social groups to study natural human mobility: Walter Colombo 

•2. To understand self-awareness in autonomic systems we must first understand the boundaries of self-over time, context and scale: Ben Paechter 

•1. How can distributed systems with no central controller become collectively self-aware, rather than at individual node level? Emma Hart 
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I. Abstract 

 Developing autonomous systems requires adaptable and context 
aware techniques.  

 The approach described here decomposes a complex system into 
service components – functionally simple individual entities enriched 
with local knowledge attributes.  

 The internal components’ knowledge is used to dynamically construct 
ensembles of service components.  

 Thus, ensembles capture collective behavior by grouping service 
components in many-to-many manner, according to their communication 
and operational/functional requirements.   

 Linguistic constructs and software tools have been developed to support 
modeling, validation, development and deployment of autonomous 
systems. A strong pragmatic orientation of the approach is illustrated by 
a concrete application. 

Keywords: Engineering Complex Autonomous Systems, Awareness in software, Adaptive components, 

Reasoning about system properties, Case studies (Swarm robotics, Cloud Computing, E-mobility).  

1. www.ascens-ist.eu/ 

2. http://www.aware-project.eu/ 

3. http://www.fokus.fraunhofer.de/de/quest/projekte/laufende_projekte/ascens/index.html 
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I. Motivation -  System Needs 

 Nowadays, we deal with distributed (software intensive) systems with 
a massive number of nodes with highly autonomic behavior still having 
harmonized global utilization of the overall system. Some features:  

• Self-awareness and adaptation while operating in unknown environments 
or  reducing management costs. 

• Maintenance of  major properties even when adapting, e.g., mutual 
exclusion, fault tolerance,  optimal energy level, distributed access, etc.  

 Grand challenge in software engineering – how to organize, program 
and reason about these systems 

 Our everyday life is dependent on new technology which poses extra 
requirements to already complex systems:  

• we expect systems to adapt to changing demands over a long operational 
time and  

• we need reliable systems whose properties can be guaranteed  

• to optimize their energy consumption .   
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I. Approach 

One engineering response to these challenges is to structure software 
intensive systems in ensembles of simple service components featuring 
autonomous and self-aware behavior.  

 Modeling: 

• provide formalisms,  

• linguistic constructs and  

• programming tools  

featuring autonomous and adaptive behavior based on awareness! 

 Integration of: 

• Functional-,  

• Operational- and  

• Energy- awareness  

to provide autonomous behavior with reduced energy consumption! 

Awareness is the state 

or ability to perceive, to 

feel, or to be conscious of 

events, objects, or 

sensory patterns. 
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Service Components and Ensembles 
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Overview Approach 

                             
  𝜲                         𝜲 
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II. Requirements Analyses 

 

To explore the system requirements, three complex application 
domains are closely examined:  

 

1. www.ascens-ist.eu/ 

2. http://www.aware-project.eu/ 

3. http://www.fokus.fraunhofer.de/de/quest/projekte/laufende_projekte/ascens/index.html 

 

 

Swarm robotics 

 

Cloud computing 

 

E-mobility 
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II. Application Domain 
 
 E-mobility is a vision of future transportation by means of electric 

vehicles network allowing people to fulfill their individual mobility 
needs in an environmental friendly manner (decreasing pollution, 
saving energy, sharing vehicles, etc.) 

 Cloud computing is an approach that delivers computing resources to 
users in a service-based manner, over the internet, thus re-enforcing 
sharing and reducing energy consumption). 

 Swarm robotics as a multi-robot system that through interaction 
among participating robots and their environment can accomplish a 
common goal, which would be impossible to achieve by a single robot. 

 

At a first glance electric  vehicular transportation, distributed 
computing on demand and swarm robotics have nothing really in 
common! 
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II. Major Application Characteristics 

For modeling purposes the following characteristics are observed: 

• Single entity (service components) 

- Individual goal 

• Grouping (ensembles) 

- Global goal  

• Self-awareness  

• Adaptation  

• Autonomous and collective behavior  

• Optimization  and  

• Robustness  
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II. Common Characteristics 

Comm. 

features  

Swarm Robotics Cloud computing  E-Mobility  

Single entity Individual robots Computing  resource Driver, vehicle, park place, 

charging station 

Individual goal Performing certain task Efficient execution Individual route plan, optimize 

energy, … 

Ensemble  A group of cooperative robots 

with a same task 

application, cpu pool, … Common rout, free vehicles, free 

park places, etc 

Global goal  Coordinated and autonomous  

behavior 

Resource availability, optimal 

throughput, … 

Travel and journey optimization, 

low energy  

Self-awareness  Knowledge about own 

capabilities 

Available resources; 

computational  requirements, … 

Awareness of own state and 

restrictions  

Adaptation  According to environmental 

changes, other 

entities, goals, etc 

According to available 

resources  

According to traffic, individual 

goals, infrastructure, resource 

availability  

Autonomous 

vs. collective 

behavior  

Optimal coordination of single 

entities in joint endeavor 

Decentralized decision making, 

global optimization  

Reaching all destinations in time, 

minimizing costs 

Optimization  Time, energy, performance Availability, computational task 

execution  

Destination achievement in time, 

vehicle/infrastructure usage  

Robustness  Hardware failures, sensory 

noise, limited sensory range and 

battery life 

Failing resources  Range limitation, charging battery 

infrastructure resources  
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This set of common features serve as a basis for modeling of such 
systems leading to a generic framework for developing and 
deploying complex autonomic systems.  

Four major (autonomic system) principles are:  

• Knowledge (facts about self- and surrounding)  

II. Common Characteristics (cont.) 

• Adaptation (dynamic and long-term self-modification to changing 
surroundings) 

• Self-awareness (re-examination of own state) 

• Emergence (simple system elements construct complex entities). 
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III Modeling 

 Control systems for the three application domains have many common 
characteristics: they are highly collective, constructed of numerous 
independent entities that share common goals. Their elements are both 
autonomous and cooperative featuring a high level of self-awareness 
and self-expressiveness.   

 A control system built out of such entities must be robust and adaptive 
offering maximal utilization with minimal energy and resource use.   
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III Modeling: Service Components and Ensembles 

A complex system is decomposed in  

• SCs - service components - major individual entities,  

• SCEs - service component ensembles - composition structures 

that reflect communication  

Further properties: 

• SCs – are single system entities that have their requirements and 

functionality, usually representing their individual goals, 

• SCEs –are collections of service components usually representing 

collective system goals (as means to dynamically structure 

independent and distributed system entities). 

 



Nikola  Šerbedžija,  20 

III Modeling: Service Components and Ensembles 
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Case Studies 

Resource ensembles as science clouds 

science cloud platform as a Platform as a 

Service (PaaS) solution.  One scenario 

considers that  a science cloud platform goes 

offline, which means the applications there has 

to be made available oat one or more of other 

nodes 

Ensembles of self-aware robots 

used to perform the most dangerous activities,  

for example in a  disaster recovery scenario: 

find and remove a dangerous object in presence 

of obstacles. 

Ensembles of cooperative vehicles 

for providing a user with a seamless daily travel 

plan, a sequence of destinations with possibly 

different travel modes and resource 

requirements   
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Ensembles Building 

 Ensemble can be made 
of same service 
component types with 
common goal 

 

 Ensemble can be made 
of different service 
component types with 
matching goals 

 

Goals can be defined by 
any function or predicate 
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Symbol SC: Service 
Component 

Knowledge Goals 

 

Obstacles/ 

bricks  
Dimension, shape, weight Protecting shape 

construction 

robots with 

a grip 

Movements, grip 

capabilities, battery state 

Cary the object for one to 

another location 

Targets Location, weight, shape  Movement 

foraging 

robots 

Movements, battery state Finding objects, 

Information propagation 

Swarm Robotics 
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Symbol SC: Service 
Component 

Knwledge Goals 

 

User 

applications 

the requests for execution 

(in terms of CPU, minimal 

space, etc.).  

Efficient execution.  

Remote 

computer 

CPUs 

processing capabilities 

and a current utilization 

Optimal utilisation 

Local memory 
Capacity, current 

occupacy 

Balanced use 

Local 

application 

services 

available appis at the local 

computer 

Appies “advertising” 

Cloud computing  
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Symbol SC: Service 
Component 

Knwledge Goals 
 

 
Users 

Route plan  to reach different places 
in a given time.  

 
E-vehicles 

occupancy and 

the battery state 

to serve users plans, 

optimize energy 
consumption 

Charging stations  Capacity/ 

Reservation plan 

optimize its use (high 
throughput) 

Park places Capacity/ 

Reservation plan 

 

optimize its use 

E-mobility 
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III Modeling Examples (Ensembles) 

E-Mobility 

• A user, 2 vehicles, 1 

charging station and 3 

parklaces 

 

• 3 vehicles that are available 

for sharing 

 

• 3 users ready to share 

vehicles 

 

• 4 basic service 

components: users, 

vehicles, charging stations 

and park places 

 

   Cloud Computing 

• A user application, 2 remote 

computers, with local memory 

of appropriate size and for 

supporting apples.  

 

• 3 remote computers 

 

• 3 different applications with 

similar processing and 

memory requirements 

 

• 4 basic service components: 

users applications, remote 

CPUs, local memory and appis  

 

Swarm Robotics 

• A task:  one obstacle, two 

robots, one target and three 

foraging robots 

 

• 3 free robots with a grip 

 

 

• 3 obstacles to be removed 

 

 

• 4 basic service components: 

obstacles, robots with a grip, 

targets, foraging robots 
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• A set of programming abstractions that permit to directly represent 
behaviors, knowledge and aggregations according to specic 
policies, and to support programming self- and context-awareness, 
and adaptation. 

• The main novelty of the language is the way sets of partners are 
selected for interaction. The single component has the possibility 
of directly identifying the partners of a communication but can also 
select them by exploiting the notion of attribute-based 
communication.  

• Ensembles are formed according to predicates over interfaces' 
attributes, representing specific properties, like spatial  coordinates 
or group memberships, and properties that they can guarantee like 
security, trust level or response time. 

III SCEL: Modeling language 
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III SCEL: Modeling language (cont.) 

 Behaviors describe how 
computations progress. 

 Interface provides a set of 
attributes characterising the 
component itself 

 Knowledge is represented 
through items containing either 
application data or awareness 
data 

 Policies control and adapt the 
actions of the different 
components in order to 
guarantee achievement of 
specific goals or satisfaction of 
specific properties 

 Attribute based communication 

•Ensembles are formed according 

  to predicates over attributes 

 

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, “SCEL: a 

language for autonomic computing”, Technical Report,. 
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 Systems:        S ::= C  | S1 ‖ S2 | (νn)S 

 

 Components: C ::= Ι[Κ,∏,P] 

 

 Processes:     P ::= nil | а.P |  P1 + P2 |  P1[ P2 ]  |  X | A(p) 

 

 Actions:           a ::= get(T)@c |  qry(T)@c |  put(t)@c  |  new(Ι,Κ,∏,P) 

 

 Targets:           c ::= n | x| self | P |  Ι.p 

 

 To execute SCEL programs, the jRESP framework has been developed. 
This is a Java runtime environment providing means to develop 
autonomic and adaptive systems programmed in SCEL [*].  

 M. Loreti. jRESP: a run-time environment for scel programs.  

   Technical Report (September 2012) http://rap.dsi.unifi.it/scel/. 

 

III SCEL Syntax 



Nikola  Šerbedžija,  30 

SCEL Processes  

 

                      P ::= nil | а.P |  P1 + P2 |  P1[ P2 ]  |  X |  A(p) 

 

Processes are the active computational units. Each process is built up 
from the inert process nil via action prefixing (a.P ), nondeterministic 
choice (P1 + P2), controlled composition (P1[ P2 ]), process variable (X), 
and parameterized process invocation A(p). 

The construct P1[ P2 ] abstracts the various forms 

 of parallel composition commonly used in process calculi. Process 
variables can support higher-order communication, namely the capability 
to exchange (the code of) a process, and possibly execute it, by first 
adding an item containing the process to a knowledge repository and 
then retrieving/withdrawing this item while binding the process to a 
process variable.  

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, “SCEL: a 

language for autonomic computing”, Technical Report,. 
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SCEL Actions 

 Actions and targets. Processes can perform five different kinds of 
actions: 

•  get(T)@c, qry(T)@c and put(t)@c  

are used to manage shared knowledge repositories by withdrawing/retrieving/ 
adding information items from/to the knowledge repository c. These actions 
exploit templates T as patterns to select knowledge items t in the repositories. 
They heavily rely on the used knowledge repository and are implemented by 
invoking the handling operations it provides.  

• fresh(n)  

introduces a scope restriction for the name n so that this name is guaranteed to 
be fresh, i.e. different from any other name previously used.  

• new(IΙ[Κ,∏,P]) 

creates a new component Ι[Κ,∏,P] 

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, “SCEL: a 

language for autonomic computing”, Technical Report,. 
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SCEL Targets 

c ::= n | x| self | P |  Ι.p 

Different entities may be used as the target c of an action. Component 

names are denoted by n, n0, . . . , while variables for names are denoted 

by x, x0, . . . .  

 

The distinguished variable self can be used by processes to refer to the 

name of the component hosting them.  

 

The target can also be a predicate P or the name p of a predicate exposed 

as an attribute in the interface I of the component that may dynamically 

change.  

 

A predicate could be a boolean-valued expression obtained by applying 

standard boolean operators to the results returned by the evaluation of 

relations between attributes and expressions. 

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, “SCEL: a 

language for autonomic computing”, Technical Report,. 
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SCEL Systems and Components 

 

 Systems aggregate components through the composition 
operator      .  It is also possible to restrict the scope of a 
name, say n, by using the name restriction operator (vn)_ .  

 Thus, in a system of the form               , the effect of the 
operator is to make name n invisible within S1. 

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, “SCEL: a 

language for autonomic computing”, Technical Report,. 
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Building Ensembles 

 Thus, actions put(t)@n and put(t)@P give rise to two different  primitive forms 
of communication: the former is a point-to-point communication, while the 
latter is a sort of group-oriented communication.  

 The set of components satisfying a given predicate P used as the target of a 
communication action can be considered as the ensemble with which the 
process performing the action intends to interact.  

 

 For example, the names of the components that can be members of an 
ensemble can be  fixed via the predicate  

     

    

      

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, “SCEL: a 

language for autonomic computing”, Technical Report,. 
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SCEL Modeling Example: Swarm Robotics 

 

• Francesco Mondada, EPFL,  

• Carlo Pinciroli, ULB 
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Actual Robots  

Foraging robots Robots with a grip 
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SCEL Example 

Each robot is rendered in SCEL as a component                                    where 
the managed element ME is as follows: 

    

This process retrieves from the knowledge repository the process 
implementing the current control step and bounds it to a variable X, executes 
the retrieved process and waits until it terminates. 

 The autonomic manager AM is defined as follows: 

 

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, “SCEL: a 

language for autonomic computing”, Technical Report,. 
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jRESP Framework for SCEL 
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SCEL: Complete Robot Scenario 

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, “SCEL: a 

language for autonomic computing”, Technical Report,. 
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jRESP: Implemengationm of Robot Scenario 
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SCEL: E-Mobility Example 

 Components and their interactions 

 Travel desires of drivers 

 Individual EVs and EV fleets 

 Traffic and road network 

 Charging and energy network 

 

Challenges 

 Intelligent knowledge distribution 

 Predicting e-vehicle travel time and 
energy 

 Travel planning 
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User Perspective 

 Goals 

• Guarantee to reach each user destination in time 

• Maximize the fulfillment rate of the user preferences 

 Awareness issues 

• User schedule 

• User preferences 

 Task 

• Planning the user's journey 

 Actions 

• Acquire and distribute information 

• Manage temporal conflicts of the user schedule 

• Manage travel modalities 
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Vehicle Perspective 

 Goal 

• Optimal travel sequence without violating constraints 

 Awareness issues 

• Current and predicted internal vehicle states 

• Current and future trips 

 Task 

• Planning of the vehicle journeys 

 Actions 

• Acquire and distribute information 

• Planning individual vehicle trips 

• Planning resource usage (parking, charging slots) 
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Infrastructure Perspective 

 Goal 

• Optimal capacity usage of the infrastructure resource 

• Guarantee quality-of-service 

 Awareness issues 

• Bookings 

• Availability estimate 

• Price-sales-function for infrastructure demand 

 Task 

• Supply and demand management 

 Actions 

• Acquire and distribute information 

• Manage bookings 

• Manage pricing 
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E-Mobility Service Components 
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Soft Constraint Logic Programming 

 Formalization of the eMobility planning problem 

 Multi-criteria shortest path problem on the trip-level 

 SCLP model on the journey level to find non-dominated optimal journeys 
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Modeling the Jorney 
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Programming Model 

CIAO Prolog: 
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SCEL Modelling: Main Scenario 

P1 

P2 

P3 

P4 

P5 

POI1 

POI2 

POI3 

POI4 

POI2 

POI1 

POI3 

Calendar 

9:00 

10:00 

12:00 

14:00 

16:00 

POIj = j-th point of interest Pi 

P1 

= i-th parking lot 
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Involved entities 

 

VEHICLE: 

• Asks information to parking lots close to the POIs 

• Provides this information to the planner, which generates the plan  (i.e. the list 

of parking lots to be reserved) 

• Books the planned parking lots 

• Monitors the execution of the plan 

 

PARKING LOT: 

• Manages (accepts) the requests of booking 
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Scenario in SCEL: Components 

 

Vehicles and parking lots are SCEL components 

running the following processes: 

 

                 = ContactParkingLots[Planner[Book[MonitorPlanExecution]]] 

 

  

             = ProvideParkingData[ManageBookings] P1 
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Scenario in SCEL: vehicle component 

VEHICLE: 

• Asks information to parking lots close to the POIs 

• Provides this information to the planner, which generates the plan  (i.e. 

the list of parking lots to be reserved) 

• Books the planned parking lots 

• Monitors the execution of the plan 

 

PARKINGLOT: 

• Manages (accepts) the requests of booking 
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Parking Lots close to POIs as Ensembles 

POI1 

POI2 

POI3 

POI2 

POI1 

POI3 

Calendar 

9:00 

10:00 

12:00 

14:00 

16:00 

P1 

P2 

P3 

P5 

ATTRIBUTES 

● type: parking lot component 

● position: position of the park 

● ... 
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Parking Lots close to POIs as Ensembles 

POI1 

POI2 

POI3 

POI2 

POI1 

POI3 

Calendar 

9:00 

10:00 

12:00 

14:00 

16:00 

P1 

P2 

P3 

P5 

Walking distance 

ENSEMBLE FOR POI2 

Group of components with 

type parking lot and 

position at walking 

distance from POI2 
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POI1 

POI2 

POI3 

POI2 

POI1 

POI3 

Calendar 

9:00 

10:00 

12:00 

14:00 

16:00 

P1 

P2 

P3 

P5 

Parking Lots close to POIs as Ensembles 

put@EnsembleOfPOI2 
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Vehicle component 

VEHICLE = ContactParkingLots[Planner[Book[MonitorPlanExecution]]] 

 

ContactParkingLots = 

 //read the size of the calendar (i.e. the list of appointments) 

 qry(“calendarSize”, ?n)@self . 

 //scan the calendar 

 for(i := 0 ; i < n ; i ++){ 

  //read an appointment of the calendar 

  qry(“calendar”, i, ?poi, ?poiPos, ?when, ?howLong)@self . 

  //contact the parking lots near to the POI (resorting to attribute-based communication) 

  put(“searchPLot”, self, poi)@{I.type=“PLot”  walkingDistance(poiPos,I.pos)} 

 } 

 //signal the completion of the phase of requirement of data to the parking lots 

 put(“dataRequestSent”)@self 

  

Ensemble predicate 
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VEHICLE = ContactParkingLots[Planner[Book[MonitorPlanExecution]]] 

 

Planner = 

 //wait the completion of the phase of requirement of data to the parking lots 

 get(“dataRequestSent”)@self . 

 // we intentionally leave unspecified this process 

  //input: collection of tuples of the form poi, pLotId, pLotInfo received from the pLots 

  //output: list of chosen planned pLots, 

                  i.e. planListSize”, nplan”, 0, pLotId0, when0, howLong0...plan”, n - 1, ...

 //signal the conclusion of the planning phase 

 put(“planningCompleted”)@self 

  

Vehicle component (cont.) 
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VEHICLE = ContactParkingLots[Planner[Book[MonitorPlanExecution]]] 

 

Book = 

 //wait the completion of the planning phase 

 get(“planningCompleted”)@self . 

 //read the size of plan list (i.e. the pLots to be booked) 

 get(“planListSize”, ?n)@self . 

 //scan the plan 

 for(i := 0 ; i < n ; i ++){ 

  //read an entry of the plan list 

  get(“plan”, i, ?pLot, ?when, ?howLong)@self . 

  //send the booking request to the pLot 

  put(“book”, self, when, howLong)@pLot . 

  //wait for the reply of pLot (we assume that booking requests always succeed) 

  get(“bookingOutcome”, true)@self . 

  //store the reservation in the list of reservations 

  put(“reservation”, i, pLot, when, howLong)@self 

 } 

 //close the list of reservations 

 put(“reservationListSize”, n)@self . 

 //signal the conclusion of the booking phase 

 put(“bookingCompleted”)@self 

  

Vehicle component (cont.) 
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VEHICLE = ContactParkingLots[Planner[Book[MonitorPlanExecution]]] 

 

MonitorPlanExecution = 

 //wait the completion of the booking phase 

 get(“bookingCompleted”)@self . 

 //read the size of reservation lists (i.e. the pLots to be visited) 

 get(“reservationListSize”, ?n)@self . 

 //scan the reservation list 

 for(i := 0 ; i < n ; i ++){ 

  //read a reservation 

  get(“reservation”, i, ?pLot, ?when, ?howLong)@self . 

  //display to the user the information about the next reservation 

  put(“reservation”, ?pLot, ?when, ?howLong)@screen . 

  //wait for the arrival to the parking lot (signalled by the user) 

  get(“arrivedAt”, pLot)@self . 

 } 

 //signal the conclusion of the plan execution phase 

 put(“planExecuted”)@self 

  

Vehicle component (cont.) 
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Parking Lot Component 

PARKINGLOT = ProvideParkingData[ManageBookings] 

 

ProvideParkingData = 

 //get a request of data about the parking lot 

 get(“searchPLot”, ?requester, ?poi)@self . 

 //provide the requested data (we intentionally leave unspecified the provided informations) 

 plotInfo := ... 

 put(poi, self, plotInfo)@requester . 

 //handle next request 

 ProvideParkingData 

 

ManageBookings = 

 //get a booking request 

 get(“book”, ?requester, ?when, ?howLong)@self . 

 //accept and store the booking 

 put(“booking”, when, howLong, requester)@self . 

 put(“bookingOutcome”, true)@requester . 

 //handle next request 

 ManageBooking 
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SOTA (State of The Affairs) Adaptation Model 

Franco Zambonelli, UNIMORE, Italy 

Dhaminda Abeywickrama 

 A general n-dimensional model for 
modeling the adaptation requirements  

 SOTA goals (states)  and utilities (conditions)  

 Self-awareness: 

• Ability to autonomously recognize its current 
position and direction of movement in the 
SOTA space 

 Self-adaptation: 

• Ability to dynamically direct the trajectory in 
the SOTA space 

 Need for feedback loops 

• SOTA self-adaptation patterns 

 
The trajectory of an entity in the SOTA space 
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A Simulation Tool for Adaptation Pattern 

Eclipse-based simulation plug-in for the engineering (i.e. explicit 
modeling, simulating and animating, and validating) of SOTA 
patterns based on feedback loops 

• Validation of the approach: 

- E-mobility case study’s individual driver planning scenario (basic scenario) 

• Environment used: 

- IBM Rational Software Architect Simulation Toolkit 8.0.4 

Franco Zambonelli, UNIMORE, Italy 

Dhaminda Abeywickrama 
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Key Goals of the Plug-in 

 Modeling of the SOTA patterns using UML 2–patterns’ structural & 
behavioral information modelled using activity, sequence and composite 
structure diagrams 

 Visual animation of the SOTA patterns’ behavior during execution to 
expose the runtime view (next element to execute, executed element, 
active states, tokens) 

 Animating composite structure of the SOTA patterns, e.g. interaction 
messages and token flows, and execution history information 

 Model-level debugging and detailed control of execution of the patterns, 
e.g. breakpoints, stepping, suspend, resume, terminate  

 Run-time prompting during patterns simulation 

Dhaminda Abeywickrama 
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Notion of Feedback Loops Explored in SOTA  

 Extends the IBM’s MAPE-K adaptation model (monitor, analyze, plan and 
execute over a knowledgebase) with multiple and interacting feedback control 
loops 

 Feedback structure with multiple control loops : 

• Intra-loops: adaptation coordination between sub-loops within a single feedback loop 

• Inter-loops: adaptation coordination between multiple feedback loops 

 Loops interact using three mechanisms :  

• Stigmergy: loops act on a shared subsystem 

• Hierarchy: an outer loop controls an inner loop 

• Direct interaction: managers communicate with each other 

 Feedback loop types: positive and negative 

 

Franco Zambonelli, UNIMORE, Italy 

Dhaminda Abeywickrama 
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A Key SOTA Pattern 

 Decentralised SC pattern 

• External, explicit feedback loop 

• Managed Element SC :  

- Sensors, effectors and SOTA goals 

• Autonomic Manager (AM) : 

- Handles adaptation activities of the managed element on a particular SOTA awareness 

dimension 

- AM has IBM’s MAPE-K model (with intra-loops within a loop) 

- More AMs? 

Increases the autonomicity of the managed element SC 

Each AM closes a feedback loop (loops interact using stigmergy, hierarchy and direct 

interaction) 

 

Franco Zambonelli, UNIMORE, Italy 
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Autonomic SC Pattern with 2 Managers 

Dhaminda Abeywickrama 
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Autonomic Service Component Pattern 

Behaviour: 

This pattern is designed around an explicit 

autonomic feedback loop. Using “sensors” 

the SC and the AM can perceive the 

different events in the environment and 

the changes in the environment itself.  

 

The AM perceives not only the 

environment, but also the service request 

made at the component and its logic. 

Having its internal goals and utilities, the 

AM manages the adaptation inside the 

component, maybe changing the logic of 

choosing actions in response to a service 

request. 

Franco Zambonelli, UNIMORE, Italy 
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Reactive Stigmergy Service Components Ensemble 

Behaviour:  

 

This pattern has  

not a direct  

feedback loop.  

Each single  

component acts  

like a bioinspired 

component  

(e.g. an ant). To satisfy its simple  

goal, the SC acts in the environment that senses with its “sensors” and 

reacts to the changes in it with its “effectors”. The different components are 

not able to communicate one with the other, but are able to propagate 

information (their actions) in the environment. Than they are able to sense 

the environment changes (other components reactions) and adapt their 

behaviour due to these changes. 

Franco Zambonelli, UNIMORE, Italy 
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Centralised AM Service Components Ensemble 

Behaviour:  

This pattern is 
designed around an 
unique feedback 
loop. All the 
components are 
managed by a 
unique AM that 
“control” all the 
components 
behaviour and, 
sharing knowledge 
about all the 
components, is able 
to propagate 
adaptation. 

Franco Zambonelli, UNIMORE, Italy 
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SOTA Example: E- mobility 

• Shift from vehicle to mobility purchasing 

• Meet consumer expectations in resource-constraint mobility 

• Manage infrastructure availability in resource-constraint mobility 

 

Innovation: 

•The entities of the mobility system are heterogeneous, interactions are 

complex and knowledge is distributed 

• Flexible adaptation in a dynamic environment 

 

Goal:  

• Self-organizing vehicles interacting with an intelligent infrastructure 

 

 

Dhaminda Abeywickrama 
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SOTA Simulation of the E-Mobility System 

 

 Each SC and SCE of the case study scenario is described using: 

• SOTA goals and utilities 

• Awareness being monitored by the managers for a managed element  

• Any contingencies that can occur  

• Corresponding self-adaptive actions using SOTA feedback loops 

 Adaptation handling :  

• Separate Autonomic Managers (AMs) for each SOTA awareness dimension 

- E.g. electric vehicle has AMs to handle adaptation of battery state of charge, climate 

comfort requirements 

• High-level AMs to handle adaptation activities involved in multiple components such 
as the user and the electric vehicle 

- E.g. routing 

 

Dhaminda Abeywickrama 
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Simulation: SOTA  Decentralized SC pattern 
simulated for  e-mobility  

Dhaminda Abeywickrama 
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III  Conclusion:  Development Approach 

Softvar develoment is an iterative process that proposes a doubly 

connected design-runtime lifecycle  for the development of service 

component ensembles (SCE) 

 

Phases and tools for the design : 

Requirements Engineering  for building  a conceptual  and operational 

framework to be used to elicit and rationally represent  ensembles 

requirements: 

• SOTA for adaptation requirements 

Verification/Validation supporting formal proofs of SCEs’ models and 

code: 

• BIP D-Finder, GMC, Iliad, jSAM, MESS, LTSA  

• (model checking, deadlock finder, modelchecker for C, Integrated dDevelopment Environment …, ) 

Modeling/Programming  for the specification and coding of SCEs: 

• Agamemnon, BIP, KnowLang, Maude, POEM, SCEL, jRESP, Java 

BIP - rigorous checking of the consistency between the different design steps 

Maude -  a high-performance reflective language 

POEM  -   a toolkit for modeling, visual debugging,  developing,  and deploying   applications 

𝜲 
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Tool Support 

Tool integration platform  

the service development environment (SDE) enables loosely 

coupled tools to work together by building  tool chains 
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Further Work 

 Self-aware systems 

 User behavior 

• Task oriented 

• Goal oriented 

• Socially acceptable 

 Individual adaptation 

 Collective adaptation 

 Trust issues 

 Ethical Issues 

• Privacy 

• Impact 

• Individual/Social consequences 

[www.ascens-ist.eu] 
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