ICAS 2013 The Ninth International Conference on Autonomic and
Autonomous Systems

Service Components and Ensembles: Building Blocks for
Autonomous Systems

- tutorial -

Nikola B. Serbedzija

24 March 2013

Lisboa

~ Fraunhofer
FOKUS

Outline

|. Introduction (definition, abstract, motivation, approach)
Il. Requirements analyses

« Practical examples

* Requirements

. 7p)

IIl. Modeling Q
E

« Approach 7

.+ SCEL i

(&)

« Adaptation patterns

°x Reasoning on system properties
I\VV. Deployment

- JRESP

- Implementation framework
V. Conclusion (discussion and further work)

~ Fraunhofer
FOKUS

|. Definition: Autonomous

au-ton-o-mous [aw-ton-uh-muhs]

= adjective

1. Government.
a. self-governing; independent; subject to its own laws only.

b. pertaining to an autonomy.

2. having autonomy; not subject to control from outside;
independent: a subsidiary that functioned as an autonomous unit.

3. Biology .
a. existing and functioning as an independent organism.

b. spontaneous.

= Origin: Greek autbnomos with laws of one's own, independent,
equivalent to auto- ...

\

~ Fraunhofer
FOKUS

|. Definition Autonomous systems

= Within the Internet, an Autonomous System (AS) is a collection of connected
Internet Protocol (IP) routing prefixes under the control of one or more network
operators that presents a common, clearly defined routing policy to the Internet.

= “Autonomous systems represent the next great step in the fusion of machines,

computing, sensing, and software to create intelligent systems capable of interacting
é\t;'st%:ﬁgmus with the complexities of the real world. Autonomous systems are the physical
embodiment of machine intelligence”.

= Autonomous systems with multiple sensory and effector modules face the problem of

e
AN
N

e
R =
e

Eﬂ‘f{%ﬁ_ coordinating these components while fulfilling tasks such as moving towards a goal
. ' and avoiding sensed obstacles.
Robotics
& = Deals with adaptation, intelligence, sensing, robotics, agent technology, self-
e organization, dynamic and independent behavior, awareness, Pervasive services and
SRR mobile computing, self-management context-aware systems, no human intervention.
_—
Z Fraunhofer Nikola Serbedia, 4

FOKUS

,C;;“;;Si Conference on Autonomic and Autonomous Systems

AUTSY: Theory and Practice of Autonomous Systems

= Design, implementation and deployment of autonomous systems;
Frameworks and architectures for component and system autonomy;
Design methodologies for autonomous systems; Composing
autonomous systems; Formalisms and languages for autonomous
systems; Logics and paradigms for autonomous systems; Ambient
and real-time paradigms for autonomous systems; Delegation and trust
In autonomous systems; Centralized and distributed autonomous
systems; Collocation and interaction between autonomous and non-
autonomous systems; Dependability in autonomous systems;
Survivability and recovery in autonomous systems; Monitoring and
control in autonomous systems; Performance and security in
autonomous systems; Management of autonomous systems; Testing
autonomous systems; Maintainability of autonomous systems

Z Fraunhofer
FOKUS

TAAS ane

= Many current Information and Communications Technology (ICT)
systems and infrastructure, such as

- the Web, Clouds, Grids and Enterprise Datacenters, Peer-to-Peer
Systems, Social and Urban Computing Systems, Cooperative
Robotic Systems, Distributed Service Systems, and Wireless and
Mobile Computing Systems,

= have the characteristic of being

» decentralized, pervasive, and composed of a large number of
autonomous entities.

= Often systems deployed on such infrastructure need to run in highly
dynamic environments, where physical context, social context, network
topologies and workloads are continuously changing. As a
conseqguence, autonomic and adaptive behaviors become necessary
aspects of such systems.

Z Fraunhofer
FOKUS

EU, FP7 Awareness Initiative: Challenges

+101 Awareness Challenges

+72. To have good and sustainable test bed and test environment for experiments. Nenad Stojt
+71. Introducing economic models. Ivova Brandic

+70. Monitoring of large scale adaptive infrastructures and mobile devices. Ivova Brandic

*69. To disambiguate the awareness concepts. Ramana Reddy

*68. Checking, requirements, model, verification and validation at runtime. Hausi Muller
*67. Representation and synchronization of requirements at runtime. Nelly Bencomo

*66. To address real problems by means of exemplars. Luciano Baresi

*65. To have intelligent runtime environments that support adaptation, keeping and managing t
*64. To exploit a graphical language in order to achieve automatic generation of engines. Tom |
*63. To have an appropriate mathematical base. Franco Bagnoli

*62. To enable adaptive systems to learn online. Peter Lewis

*61. How to describe and to compare information? Yvonne Bernard

*60. How to ensure safety and correctness? Manuele Brambilla

*59. How to manage the relationship between individual and group levels? Carlo Pinciroli

*58. How to achieve adatpivity at runtime? Martin Wirsing

*57. How to engineer decision systems? Henry Bensler

*56. How to map raw data to knowledge? Emil Vassev

55. Dealing with high and low levels of contexts. Wei Dai

*54. Considering sociological aspects besides technical aspects. Francois Toutain

*52. How to measure the level of awareness? E.g. the number of variables AND the algorithm
= *51. Measuring and finding metrics for the different kinds of awareness. Franco Zambonelli
Fraunhofer *50. The difficulty of writing precise requirements about flexibility. Peter Liewis

FOKUS «49. The difficulty of proving all the properties of an emergent system. Jose Luis Fernandez

*48. How to improve the communication between local and global systems in swarm robotics?.
A7 MonitorinA and controllina eamarnant nronartice and enacifviind and controllina adantatinn:

|. Abstract

= Developing autonomous systems requires adaptable and context
aware techniques.

= The approach described here decomposes a complex system into
service components — functionally simple individual entities enriched
with local knowledge attributes.

= The internal components’ knowledge is used to dynamically construct
ensembles of service components.

= Thus, ensembles capture collective behavior by grouping service
components in many-to-many manner, according to their communication
and operational/functional requirements.

= Linguistic constructs and software tools have been developed to support
modeling, validation, development and deployment of autonomous
systems. A strong pragmatic orientation of the approach is illustrated by
a concrete application.

Keywords: Engineering Complex Autonomous Systems, Awareness in software, Adaptive components,
Reasoning about system properties, Case studies (Swarm robotics, Cloud Computing, E-mobility).

1. www.ascens-ist.eu/

% Fraunhofer 2. http://www.aware-project.eu/
FOKUS 3. http://www.fokus.fraunhofer.de/de/quest/projekte/laufende_projekte/ascens/index:.htmi

|. Motivation - System Needs

= Nowadays, we deal with distributed (software intensive) systems with
a massive number of nodes with highly autonomic behavior still having
harmonized global utilization of the overall system. Some features:

- Self-awareness and adaptation while operating in unknown environments
or reducing management costs.

- Maintenance of major properties even when adapting, e.g., mutual
exclusion, fault tolerance, optimal energy level, distributed access, etc.

= Grand challenge in software engineering — how to organize, program
and reason about these systems

= Our everyday life is dependent on new technology which poses extra
requirements to already complex systems:

* We expect systems to adapt to changing demands over a long operational
time and

* we need reliable systems whose properties can be guaranteed
* to optimize their energy consumption .

~ Fraunhofer
FOKUS

|. Approach

One engineering response to these challenges is to structure software
Intensive systems in ensembles of simple service components featuring
autonomous and self-aware behavior.

= Modeling:
- provide formalisms, Awareness is the state
- linguistic constructs and or ability to perceive, to

feel, or to be conscious of
events, objects, or
sensory patterns.

* programming tools

featuring autonomous and adaptive behav.
= |[ntegration of:

 Functional-,

* Operational- and

* Energy- awareness

to provide autonomous behavior with reduced energy consumption!

~ Fraunhofer
FOKUS

Service Components and Ensembles

ascens®*’

ensembles engineering ensembles
. achieve an overall system’s goal . language for autonomous behavior
. knowledge representation of self-aware
have a massive number of nodes components
operate in open and non- . mechanisms for adaptation
deterministic environments
. are built from self-aware components . verification using formal methods
. adapt dynamically to new conditions . set of tools and tool integration platform
_—
Z Fraunhofer Nikola Serbedzia, 11

FOKUS

Overview Approach

Case Studies
Cloud Computing
Swarm Robotics
Collaborating E-Vehicles

Tool Integr. Platform
Language
Engineering

Service
Component
Ensembles

Adaptation &
Self-Awareness
Knowledge &
Emergence

Correctness &
Foundational
Models

Z Fraunhofer
FOKUS

Nikola Serbedzija, 12

Il. Requirements Analyses

To explore the system requirements, three complex application

domains are closely examined:

Swarm robotics

L
-,

S S .

A& — E-mobility

D—q

@ Cloud computing

1. www.ascens-ist.eu/

—
ﬁ Fraunhofer 2. http://www.aware-project.eu/

Nikola Serbedzija, 13

FOKUS 3. http://www.fokus.fraunhofer.de/de/quest/projekte/laufende_projekte/ascens/index.html

Il. Application Domain

= E-mobility is a vision of future transportation by means of electric
vehicles network allowing people to fulfill their individual mobility
needs in an environmental friendly manner (decreasing pollution,
saving energy, sharing vehicles, etc.)

= Cloud computing is an approach that delivers computing resources to
users in a service-based manner, over the internet, thus re-enforcing
sharing and reducing energy consumptlon)

= Swarm robotics as a multi-robot system that through interaction
among participating robots and their environment can accomplish a
common goal, which would be impossible to achieve by a single robot.

At a first glance electric vehicular transportation, distributed

computing on demand and swarm robotics have nothing really in
common!

—_——

~ Fraunhofer
FOKUS

Il. Major Application Characteristics

For modeling purposes the following characteristics are observed:
* Single entity (service components)
- Individual goal
» Grouping (ensembles)
- Global goal
- Self-awareness
« Adaptation
« Autonomous and collective behavior
* Optimization and
« Robustness

~ Fraunhofer
FOKUS

II. Common Characteristics

Comm. Swarm Robotics Cloud computing E-Mobility

features

Single entity Individual robots Computing resource Driver, vehicle, park place,
charging station

Individual goal | Performing certain task Efficient execution Individual route plan, optimize
energy, ...

Ensemble A group of cooperative robots | application, cpu pool, ... Common rout, free vehicles, free

with a same task park places, etc
Global goal Coordinated and autonomous | Resource availability, optimal | Travel and journey optimization,

behavior

throughput, ...

low energy

Self-awareness

Knowledge about own

Available resources;

Awareness of own state and

capabilities computational requirements, ... | restrictions

Adaptation According to environmental According to available | According to traffic, individual
changes, other resources goals, infrastructure, resource
entities, goals, etc availability

Autonomous Optimal coordination of single | Decentralized decision making, | Reaching all destinations in time,

VS. collective | entities in joint endeavor global optimization minimizing costs

behavior

Optimization Time, energy, performance Availability, computational task | Destination achievement in time,

execution vehicle/infrastructure usage

Robustness Hardware failures, sensory | Failing resources Range limitation, charging battery
noise, limited sensory range and infrastructure resources
battery life

—

 Fraunhofer

FOKUS

Il. Common Characteristics (cont.)

This set of common features serve as a basis for modeling of such
systems leading to a generic framework for developing and
deploying complex autonomic systems.

Four major (autonomic system) principles are:

« Knowledge (facts about self- and surrounding)

- Adaptation (dynamic and long-term self-modification to changing
surroundings)

- Self-awareness (re-examination of own state)

Emergence (simple system elements construct complex entities).

~ Fraunhofer
FOKUS

Il Modeling

= Control systems for the three application domains have many common
characteristics: they are highly collective, constructed of numerous
Independent entities that share common goals. Their elements are both
autonomous and cooperative featuring a high level of self-awareness
and self-expressiveness.

= A control system built out of such entities must be robust and adaptive
offering maximal utilization with minimal energy and resource use.

~ Fraunhofer
FOKUS

Il Modeling: Service Components and Ensembles

A complex system is decomposed in

« SCs - service components - major individual entities,

« SCEs - service component ensembles - composition structures
that reflect communication

Further properties:

« SCs — are single system entities that have their requirements and
functionality, usually representing their individual goals,

« SCEs —are collections of service components usually representing
collective system goals (as means to dynamically structure
iIndependent and distributed system entities).

~ Fraunhofer
FOKUS

Il Modeling: Service Components and Ensembles

Knowledge

Know-
ledge

Know-
ledge

Knowledge

_—
~ Fraunhofer
FOKUS

Nikola Serbedzija, 20

Case Studies

Ensembles of self-aware robots

used to perform the most dangerous activities,
for example in a disaster recovery scenario:
find and remove a dangerous object in presence
of obstacles.

SWarnm

|
| robot \?Vk‘)’ll
environment - P
ml objects

power
station

Resource ensembles as science clouds

science cloud platform as a Platform as a
Service (PaaS) solution. One scenario
considers that a science cloud platform goes
offline, which means the applications there has
to be made available oat one or more of other
nodes

Ensembles of cooperative vehicles

for providing a user with a seamless daily travel
plan, a sequence of destinations with possibly
different travel modes and resource
requirements

LMU Munich

N IMT Lucca

\

~ Fraunhofer
FOKUS

Ensembles Building

= Ensemble can be made
of same service
component types with
common goal

TSN = Ensemble can be made
£2: Ensefbled P of different service

@ @ component types with
o matching goals
E1: Ensembles

® @ NN Goals can be defined by
any function or predicate

Components

F
~ Fraunhofer Nikola Serbedzija, 22
FOKUS

Swarm Robotics

SC: Service
Component

Symbol

Obstacles/
bricks

robots with
aqgrip

Targets

foraging
robots

® ® ©O

Knowledge

Dimension, shape, weight

Movements, grip
capabilities, battery state

Location, weight, shape

Movements, battery state

Goals

Protecting shape
construction

Cary the object for one to
another location

Movement

Finding objects,
Information propagation

~ Fraunhofer
FOKUS

Cloud computing

Symbol SC: Service Knwledge Goals
Component

the requests for execution Efficient execution.
User : .
. (in terms of CPU, minimal
applications

space, etc.).
Remote processing capabilities Optimal utilisation
@ computer and a current utilization
CPUs
Capacity, current Balanced use
@ Local memory
occupacy
Local available appis ai ihe jocal Appies “advertising”
@ application computer
services

~ Fraunhofer
FOKUS

E-mobility

Symbol ~ SC:Service
Component
0]
[EP @ Users
E-vehicles

= (0)

@ Charging stations

Park places

®

Knwledge

Route plan

occupancy and
the battery state

Capacity/
Reservation plan
Capacity/
Reservation plan

Goals

to reach different places
In a given time.

to serve users plans,
optimize energy
consumption

optimize its use (high
throughput)

optimize its use

~ Fraunhofer
FOKUS

Il Modeling Examples (Ensembles)

E2: Ense bIE}{

E1: Enserny les

o~ w
SRCROIICHED
Y00 Joo
/| © e %%

Compeonents

E-Mobility

A user, 2 vehicles, 1 -
charging station and 3
parklaces

3 vehicles that are ave
for sharing .

3 users ready to share °
vehicles

4 basic service
components: users, |°
vehicles, charging sta
and park places

\

~ Fraunhofer
FOKUS

-3
~—,

Cloud Computing

A user application, 2 rer
computers, with local m
of appropriate size and 1
supporting apples.

3 remote computers

3 different applications v
similar processing and
memory requirements

4 basic service compon
users applications, remc
CPUs, local memory an

Swarm Robotics

« Atask: one obstacle, two
robots, one target and three
foraging robots

+ 3 free robots with a grip

» 3 obstacles to be removed

* 4 basic service components:
obstacles, robots with a grip,
targets, foraging robots

Il SCEL: Modeling language

* A set of programming abstractions that permit to directly represent
behaviors, knowledge and aggregations according to specic
policies, and to support programming self- and context-awareness,
and adaptation.

* The main novelty of the language is the way sets of partners are
selected for interaction. The single component has the possibility
of directly identifying the partners of a communication but can also
select them by exploiting the notion of attribute-based
communication.

* Ensembles are formed according to predicates over interfaces'
attributes, representing specific properties, like spatial coordinates
or group memberships, and properties that they can guarantee like
security, trust level or response time.

~ Fraunhofer
FOKUS

IIl SCEL: Modeling language (cont.)

A A
= Behaviors describe how
computations progress. . I merfacs .
= Interface provides a set of ¥
attributes characterising the g »
component itself Il
= Knowledge is represented K Folicias l
through items containing either Knowledgs P
application data or awareness
data Nh_-_f-_rf
= Policies control and adapt the

actions of the different
components in order to
guarantee achievement of
specific goals or satisfaction of

specific properties ‘Ensembles are formed according
= Attribute based communication to predicates over attributes

ﬂ Fraunhofer R.De Nicola, M. Loret.i, R.Pugligse, and F. .Tiezzi, “SCEL: a
FOKUS language for autonomic computing”, Technical Report,.

Il SCEL Syntax

= Systems: S:=C |S11S2]|(vn)S

= Components: C ::= [[K,[],P]

= Processes: P :=nil|a.P| P1+P2| P1[P2] | X|A(p)

= Actions: a:=get(h@c| qry(hH@c | put(t)@c | new(,K,[],P)

= Targets: c:=n|x|self|P| ILp

= To execute SCEL programs, the JRESP framework has been developed.
This is a Java runtime environment providing means to develop
autonomic and adaptive systems programmed in SCEL [*].

M. Loreti. JRESP: a run-time environment for scel programs.
= : _ R
= Fraunhofer Technical Report (September 2012) http://rap.dsi.unifi.it/scel/.

FOKUS

SCEL Processes

P:=nil|a.P| P1+P2]| P1[P2] | X| A(p)

Processes are the active computational units. Each process is built up
from the inert process nil via action prefixing (a.P), nondeterministic
choice (P1 + P2), controlled composition (P1[P2]), process variable (X),
and parameterized process invocation A(p).

The construct P1[P2] abstracts the various forms

= of parallel composition commonly used in process calculi. Process
variables can support higher-order communication, namely the capability
to exchange (the code of) a process, and possibly execute it, by first
adding an item containing the process to a knowledge repository and
then retrieving/withdrawing this item while binding the process to a
process variable.

= Fraunhofer R.De Nicola, M. Loret.i, R.Pugligse, and F. .Tiezzi, “SCEL: a
FOKUS language for autonomic computing”, Technical Report,.

SCEL Actions

= Actions and targets. Processes can perform five different kinds of
actions:
« get(T)@c, qry(T)@c and put(t)@c

are used to manage shared knowledge repositories by withdrawing/retrieving/
adding information items from/to the knowledge repository c. These actions
exploit templates T as patterns to select knowledge items t in the repositories.
They heavily rely on the used knowledge repository and are implemented by
invoking the handling operations it provides.

» fresh(n)

introduces a scope restriction for the name n so that this name is guaranteed to
be fresh, i.e. different from any other name previously used.

* new(l/[K,[],P])
creates a new component /[K,[],P]

~ Fraunhofer R.De Nicola, M. Loreti, R.Pugligse”, and F. Tiezzi, “SCEL: a
FOKUS language for autonomic computing”, Technical Report,.

SCEL Targets

c:=n|x|self|P| lp
Different entities may be used as the target c of an action. Component
names are denoted by n, n0O, . . ., while variables for names are denoted

by x, X0,

The distinguished variable self can be used by processes to refer to the
name of the component hosting them.

The target can also be a predicate P or the name p of a predicate exposed
as an attribute in the interface | of the component that may dynamically
change.

A predicate could be a boolean-valued expression obtained by applying
standard boolean operators to the results returned by the evaluation of
relations between attributes and expressions.

ﬂ Fraunhofer R.De Nicola, M. Loret.i, R.Pugligse, and F. .Tiezzi, “SCEL: a
FOKUS language for autonomic computing”, Technical Report,.

SCEL Systems and Components

= Systems aggregate components through the composition
operator -1l -. It is also possible to restrict the scope of a
name, say n, by using the name restriction operator (vn)_ .

= Thus, in a system of the form s, || (vn)s,., the effect of the
operator is to make name n invisible within S1.

ﬂ Fraunhofer R.De Nicola, M. Loret.i, R.Pugligse, and F. .Tiezzi, “SCEL: a
FOKUS language for autonomic computing”, Technical Report,.

Building Ensembles

= Thus, actions put(t)@n and put(t)@P give rise to two different primitive forms
of communication: the former is a point-to-point communication, while the
latter is a sort of group-oriented communication.

= The set of components satisfying a given predicate P used as the target of a
communication action can be considered as the ensemble with which the
process performing the action intends to interact.

= For example, the names of the components that can be members of an
ensemble can be fixed via the predicate

© T.d € {n,m, o0}

- L.active = yes AL.batteryLevel > low.

~ Fraunhofer R.De Nicola, M. Loreti, R.Pugligse”, and F. Tiezzi, “SCEL: a
FOKUS language for autonomic computing”, Technical Report,.

SCEL Modeling Example: Swarm Robotics

\

4 Fraunhofer Francesco Mondada, EPFL,
FOKUS « Carlo Pinciroli, ULB

Actual Robots

Foraging robots Robots with a grip

\

~ Fraunhofer Nikola Serbedzija, 36
FOKUS

SCEL Example

Each robot is rendered in SCEL as a component Z[K, 11, (AM[ME])]
the managed element ME is as follows:

= ME £ qry(“controlStep”,?X)@self. (get(“termination”)Gself. ME)[X |

This process retrieves from the knowledge repository the process
implementing the current control step and bounds it to a variable X, executes
the retrieved process and waits until it terminates.

= The autonomic manager AM is defined as follows:

M
AM = P&aﬁery}bfﬂnétor[PdataSEEkET[PtargstSesker]]

Process PiatasSecker 18 defined as follows:

Pdataﬂe:s ker —

Pmn domWalk

Fin formed

A

qry(“targetLocation™ 7z, 7y)Q(T task = “task;”).
put(“targetLocation” , x,y)@self.

get(“informed” . false)@self. put(“informed” . true)@self
put(“direction” , random() - 2m)Qself. put(“termination”)@self

qry(“target Location”, Tz, Ty)@self.
put(“direction” | towards(z, y))@self. put(“termination™)@self

where

% Fraunhofer R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, “SCEL: a

FOKUS

language for autonomic computing”, Technical Report,.

JRESP Framework for SCEL

SCEL Processes (Threads)

2
Policies 5
o
=
= Knowledge
e
%
Hardware/Virtual Machine g
<
U D I:Inuul:l 7
Input devices /Sensors Output devices/Actuators
(GPS, Temperature, Battery level, CPU load...)
_—
Z Fraunhofer Nikola Serbedzia, 38

FOKUS

SCEL: Complete Robot Scenario

For the sake of readability, in “the definition of process PiargetSecker, We have
explmted an if —then—else construct, which however can be easily rendered in
SCEL. For example, the term

qry(“lowBattery”, Tlow)@self. if (low) then { Pipe,, } else { Poe. }

can be rewritten as follows:

qry(“lowBattery” true)Gself. P, + qry(“lowBattery”,false)@self. Ppj..

The processes executed by the managed element MFE at each control step are

as follows:

P lowBattery

P found

P informed

_ Pmﬂdoquﬂk

A

|Ie>

|Ie>

Y

put(“stop” J@self. qry(“gps”, 7z, Ty)Gself.
put(“sos”, x,y)Q(T.task = “task;”).
get(“rescued”)@self. put(“termination”) Gself

put(“stop”)aself. qry(“gps”, 7z, 7y)Aself.
put(“targetLocation” ,x,y)@Qself. ... execute task i ...

qry(“target Location”, 7z, Ty)Gself.
put(“direction” , towards(z, y))@self. put(“termination”)Gself

put(“direction” , random() - 27)@self. put(“termination”)Qself

% Fraunhofer R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, “SCEL: a

FOKUS

language for autonomic computing”, Technical Report,.

Nikola Serbedzija, 39

JRESP: Implemengationm of Robot Scenario

\|

Tuple t = query(new Template|
new ActualTemplateField("lowBattery") .
new FormalTemplateField{ Boolean.class)) ,
Self .SELF);
boolean low = t.getElement At(Boolean.class, 1);
get(new Template(
new ActualTemplateField("controlStep") ,
new FormalTemplateField| Agent.class)),
Self .SELF);
put{ new Tuple("controlStep" , new LowBattery()) , Self. SELF };
query(new Template(
new ActualTemplateField("lowBattery”) ,
new ActualTemplateField(false)) ,
Self .SELF);
} else {
t = query(new Template(
new ActualTemplateField("target") ,
new Formal TemplateField(Boolean.class)) ,

Self . SELF);
boolean found = t.getElement At(Boolean.class, 1);
if (found) {

get(new Template(
new ActualTemplateField] "controlStep"),
new FormalTemplateField{ Agent.class)) ,

Self .SELF };
put{ new Tuple("controlStep" , new Found()), Sel. SELF };
doTask();
} else {
t = query(new Template(

I T S (L o P T o L B T LT . B B

Nikola Serbedzija, 40

SCEL: E-Mobility Example

= Components and their interactions
= Travel desires of drivers

= Individual EVs and EV fleets

= Traffic and road network

= Charging and energy network

Challenges
= [ntelligent knowledge distribution

= Predicting e-vehicle travel time and ==
energy 0 T

= Travel planning

\

~ Fraunhofer
FOKUS

User Perspective

= Goals

« Guarantee to reach each user destination in time

* Maximize the fulfillment rate of the user preferences
= Awareness issues

» User schedule

« User preferences
= Task

O
* Planning the user's journey
= Actions
» Acquire and distribute information
* Manage temporal conflicts of the user schedule
o>

« Manage travel modalities

\

~ Fraunhofer Nikola Serbedzija, 42
FOKUS

Vehicle Perspective

= Goal
« Optimal travel sequence without violating constraints
= Awareness issues
« Current and predicted internal vehicle states
 Current and future trips
= Task
 Planning of the vehicle journeys

= Actions
+ Acquire and distribute information
 Planning individual venhicle trips
- e

 Planning resource usage (parking, charging slots)

\

~ Fraunhofer
FOKUS

Infrastructure Perspective

= Goal
« Optimal capacity usage of the infrastructure resource
« Guarantee quality-of-service
= Awareness issues
* Bookings
* Avalilability estimate
* Price-sales-function for infrastructure demand
= Task
* Supply and demand management
= Actions
» Acquire and distribute information
* Manage bookings
- Manage pricing

) G

\

~ Fraunhofer
FOKUS

E-Mobility Service Components

User Component X N

B ~ ;
Naimw Tarst
Descrgtion A woeris o acive wni o the syslens Givee s dudy camabar of s N
s s oty 1) o i st zing satoes 0 \
| ol T Opinal wand wqaace wilaw voRing o S
R T nfrastructure Componen
2 Vebick WD un s e, we e e vl b e
i | sl Bk purking s e charpi. sobema . 11 v e
[Kesscrig Uit Userians parer Il s ok i e v
Waniws T Tenel ks | s v
2 Calendhe aciivties s | Opthrul] [- Jarking i B¢
. Cowpond @ W Decriion A perking I s o ISt arl of e e i e e hookod
t T . g fand cuied) by wehicks. A sirge prking R can b bocki B 4
TT Chonge calendr sinvmes P - i sabice waiee Ll s con b bkt i atsancs
Ching: et prefereoces Ik ey L Lo L
s — L = -
Chinge veic sdisgs | Wik v b eteeies i e 2 harge
2 Chompe driviag ayle — . | w 2 yinghe vetrkle 3 3 thi
& Clungs bookings 2 Geal purkng s persbe foe vehic
& Chap s , | it ohurce, sk s b €0t a mangory b
Upimtonsiaeges | | Mrmos imeiksy 5 mponear |8 L O :
[12 Minitee B custof el (evin. ek, ey &) Guamins of qaivy-o irvie
! gl ol Tha el K
Tobie & Propertes of he U &€ ¢ o | o
154 1 Awwreness
e 1
s 2 Reamring Lot
¥ R e
Opserzason sirsiogen | 1 Mitirsire fucl conammptars 1 ABpaboe
2 Misirsire perney ont 5
% Misirs ey tiss |
: Optinirsiea | Alspiiiin
T 1) Pogetes ofte Yeboghe €
Opmarkzaimon e |
> Bawne Grd wage
Tabte X Pagurtio o the charging carion S€

__E-F
~ Fraunhofer Nikola Serbedija, 45
FOKUS

Soft Constraint Logic Programming

= Formalization of the eMobility planning problem
= Multi-criteria shortest path problem on the trip-level
= SCLP model on the journey level to find non-dominated optimal journeys

Z Fraunhofer
FOKUS

Nikola Serbedzija, 46

Modeling the Jorney

t}Vl tlE’V 1 t;l

tpt

Start. time

cz2
ts

Dwr.

7
11
18

(3.9
Road Network Appointments

1
2
3

Name | Spots | Loc.
cspl T P
csrl 4 r
csrl i r

Charging Stations

Z Fraunhofer
FOKUS

Nikola Serbedzija, 47

Programming Model

CIAQO Prolog:

r-module (journey,_,_).
r—use_module(library (lists)).

:—use_module(library (aggregates)).

:—use_module(paths).

plus{[1,L, []}.
plusi([[P,T,E,ChEvV] |RestL], L,

[[P, TI,E, ChEv] |BestPaths]) -

nondominated([P, T,E], L},
plus (RestL, L, BestFaths) .
plus([[P,T,E,ChEv] |[RestL], L,

BestPaths) :-

‘+nondominated([P, TI,E], L),
plus (RestL, L, BestFaths) .

times ([T1,E1], [T2,E2], [T3,E3]):-
T3 = T1 + T2,
E3 = E1 + EZ2.

journey ([X,¥], [F]1, []1,[I,E],50C) -
appointment (X, Tx,Dx), appointment (¥, Ty,DV¥),
pathi(¥,¥,®, [¥],[T,E], S0C),

timeSum(Tx, D¥, T,ArrT), ArrI=<Iy.

journey ([X,¥], [F], [[X,ID]], [T, E], SOC) :-
appointment (X, Tx,Dx), appointment (¥, Ty,DV¥),
\+path (X, ¥, P, [¥X], [T,E], SoC),
chargingstation (ID, Spots,X), Spots>0,
newsoC (SoC, DX, NewsSoC) ,

path (X, ¥,F, [X], [T, E], NewSoC),
timesum(Tx, DX, T,ArrI}, ArrI=<Iy.
nondominated([P, T, E]), []}.

nondominated([P,T,E], journey ([X| [¥|Z]], [F|LP],ChEv, [T,E], SOC) -
[[P1,T1,E1l,ChEv1] |L]):- appointment (¥, Tx,Dx), appointment (¥, Ty,D¥),
“+minPair([T1,E1], [T, E]), path(x,¥,?, [X],[T1,E1l], SOC),

nondominated([P, T,E], L). timeSum (Ix, DX, T1,ArrT), AIrI=<ITy,
journey ([Y|Z], LP, ChEw, [T2,EZ], (530C-E1)),
times([T1,E1], [T2,E2],[T,E]}.
appointment {p, 7,1} .
appointment {r,11,2).
appointment {t, 18, 3).

journey ([X| [Y|Z]]1, [FILF], [[X,ID] |ChE¥], [T,E], S0C) -
appointment (¥, Tx,Dx), appointment (¥, Ty,0V¥),
“+path (¥, ¥, P, [X], [T1,E1],50C),
chargingstation(ID, Spots,X), Spots=0,
newsoC (SoC, DX, NewsSoC) ,
path(x, ¥,P?, [¥X],[T1,E1l], NewsSoC),
timesum(Ix, Dx, T1,ArrI), ArrI=<Iy,

chargingstation(cspl, 7,p) .
chargingstation(csrl, 4,r).
chargingstation(csr2,0,r).

journey ([Y|EZ], LP, ChEv, [T2,E2], (HewsoC-E1)}),
times([T1,E1], [T2,E2],[T,E]}.
journeys (Flaces, BV, BestJourneies) : -
findall([®, I,E,ChEv], journey (Flaces, P, ChEv, [T, E], 50C), ResL),
plustResL,ResL,Eestpourneiesj.

Z Fraunhofer
FOKUS

SCEL Modelling: Main Scenario

O
Calendar \
9:00, POI2
10:00
L

POI1
12:00
14:00 POI3
16:00

R

®
POI1

®
POI3

\

~ Fraunhofer
FOKUS

@ . . .
POlj = j-th point of interest

m = i-th parking lot

Involved entities

VEHICLE:

Asks information to parking lots close to the POls

Provides this information to the planner, which generates the plan (i.e. the list
of parking lots to be reserved)

Books the planned parking lots
Monitors the execution of the plan

PARKING LOT:

Manages (accepts) the requests of booking

~ Fraunhofer
FOKUS

A

Scenario in SCEL: Components

Vehicles and parking lots are SCEL components

running the following processes:

a = ContactParkingLots[Planner[Book[MonitorPlanExecution]]]

= ProvideParkingData[ManageBookings]

\

~ Fraunhofer
FOKUS

Scenario in SCEL: vehicle component

VEHICLE:

Asks information to parking lots close to the POls

Provides this information to the planner, which generates the plan (i.e.
the list of parking lots to be reserved)

Books the planned parking lots
Monitors the execution of the plan

PARKINGLOT:

Manages (accepts) the requests of booking

_—
~ Fraunhofer
FOKUS

Nikola Serbedzija, 52

Parking Lots close to POls as Ensembles

O
qIP Calendar \
9:00 POI2
10:00 PO|1
o 2
12:00

14:00, POI3 ®

9_/ POI2
O
= o=,

POI1 POI3

ATTRIBUTES

. type: parking lot component

. position: position of the par

Z Fraunhofer Nikola Serbedzia, 53
FOKUS

Parking Lots close to POls as Ensembles

O
Calendar \ _
9:00 POI2
-

POI1
12:00
14:000 POI3
16:00

ENSEMBLE FOR POI2
Group of components with

type parking lot and

position at walking
distance from POI2

Walking distance

POI3

Z Fraunhofer
FOKUS

Parking Lots close to POls as Ensembles

O | |
' g P3
_— 10:00 POI1

12:00
14:00 POI3 .

- //Pou

put@EnsembleOfPOI2 -

POI1 o013

\

~ Fraunhofer
FOKUS

Vehicle component

..

ContactParkingLots =

/ /read the size of the calendar (i.e. the list of appointments)
qry(“calendarSize”, ?n)@self .
//scan the calendar
for(i:=0;i<n;i++){
//read an appointment of the calendar
gry(“calendar”, i, ?poi, ?poiPos, ?when, ?howLong)®@self .
/ /contact the parking lots near to the POI (resorting to attribute-based communication)
put(“searchPLot”, self, poi)@{l.type=“PLot” A walkingDistance(poiPos,|.pos)}

Ensemble predicate

3

/ /signal the completion of the phase of requirement of data to the parking lots
put(“dataRequestSent”)@self

_—
~ Fraunhofer
FOKUS

Nikola Serbedzija, 56

Vehicle component (cont.)

..................

Planner =
/ /wait the completion of the phase of requirement of data to the parking lots
get(“dataRequestSent”)@self .
/1 we intentionally leave unspecified this process

//input: collection of tuples of the form (poi, pLotld, pLotinfo) received from the pLots

/ /output: list of chosen planned pLots,

i.e. (OplanListSize”, n) (Cplan”, 0, pLotld0, whenO, howLong0) ... (Oplan”, n - 1, ...)

/ /signal the conclusion of the planning phase
put(“planningCompleted”)@self

F
~ Fraunhofer Nikola Serbedzija, 57
FOKUS

Vehicle component (cont.)

VEHICLE = ContactParkingLots[Planner[Book[MonitorPlanExecution]]]

Book =
/ /wait the completion of the planning phase
get(“planningCompleted”)@self .
//read the size of plan list (i.e. the pLots to be booked)
get(“planListSize”, ?n)@self .
//scan the plan
for(i:=0;i<n;i++){
//read an entry of the plan list
get(“plan”, i, ?pLot, ?when, ?howLong)®@self .
/ /send the booking request to the pLot
put(“book”, self, when, howlLong)@pLot .
/ /wait for the reply of pLot (we assume that booking requests always succeed)
get(“bookingOutcome”, true)@self .
/ /store the reservation in the list of reservations
put(“reservation”, i, pLot, when, howLong)®@self
3
/ /close the list of reservations
put(“reservationListSize”, n)@self .
/ /signal the conclusion of the booking phase
put(“bookingCompleted”)@self

\

~ Fraunhofer
FOKUS

Nikola Serbedzija, 58

Vehicle component (cont.)

...

...

MonitorPlanExecution =
/ /wait the completion of the booking phase
get(“bookingCompleted”)@self .
/ /read the size of reservation lists (i.e. the pLots to be visited)
get(“reservationListSize”, ?n)@self .
//scan the reservation list
for(i:=0;i<n;i++){
//read a reservation
get(“reservation”, i, ?pLot, ?when, ?howLong)@self .
/ /display to the user the information about the next reservation
put(“reservation”, ?pLot, when, howLong)®@screen .
/ /wait for the arrival to the parking lot (signalled by the user)
get(“arrivedAt”, pLot)@self .
3
/ /signal the conclusion of the plan execution phase
put(“planExecuted”)@self

\

~ Fraunhofer Nikola Serbedzija, 59
FOKUS

Parking Lot Component

PARKINGLOT = ProvideParkingData[ManageBookings]

ProvideParkingData =

//get a request of data about the parking lot

get(“searchPLot”, ?requester, ?poi)@self .

/ I provide the requested data (we intentionally leave unspecified the provided informations)
plotinfo := ...

put(poi, self, plotinfo)@requester .

/ /handle next request

ProvideParkingData

ManageBookings =

//get a booking request

get(“book”, ?requester, ?when, ?howLong)@self .
/ /accept and store the booking

put(“booking”, when, howlLong, requester)@self .
put(“bookingOutcome”, true)@requester .

/ /handle next request

ManageBooking

\

~ Fraunhofer
FOKUS

SOTA (State of The Affairs) Adaptation Model

= A general n-dimensional model for T s3

modeling the adaptation requirements

= SOTA goals (states) and utilities (conditions) | :
= Self-awareness: A //
| U

* Ability to autonomously recognize its current
position and direction of movement in the
SOTA space

= Self-adaptation:

« Ability to dynamically direct the trajectory in 1
the SOTA space | 52
* Need for feedback loops @)

« SOTA self-adaptation patterns

S1
The trajectory of an entity in the SOTA space

\

~ Fraunhofer Franco Zambonelli, UNIMORE, Italy
FOKUS Dhaminda Abeywickrama

A Simulation Tool for Adaptation Pattern

BEclipse-based simulation plug-in for the engineering (i.e. explicit
modeling, simulating and animating, and validating) of SOTA
patterns based on feedback loops

- Validation of the approach:
- E-mobility case study’s individual driver planning scenario (basic scenario)

* Environment used:
- IBM Rational Software Architect Simulation Toolkit 8.0.4

—
 Fraunhofer Franco Zambonelli, UNIMORE, Italy
FOKUS Dhaminda Abeywickrama

Key Goals of the Plug-in

= Modeling of the SOTA patterns using UML 2—patterns’ structural &
behavioral information modelled using activity, sequence and composite
structure diagrams

= Visual animation of the SOTA patterns’ behavior during execution to
expose the runtime view (next element to execute, executed element,
active states, tokens)

= Animating composite structure of the SOTA patterns, e.g. interaction
messages and token flows, and execution history information

= Model-level debugging and detailed control of execution of the patterns,
e.g. breakpoints, stepping, suspend, resume, terminate

= Run-time prompting during patterns simulation

: Dhaminda Abeywickrama

~ Fraunhofer
FOKUS

Notion of Feedback Loops Explored in SOTA

= Extends the IBM’s MAPE-K adaptation model (monitor, analyze, plan and
execute over a knowledgebase) with multiple and interacting feedback control
loops

= Feedback structure with multiple control
* Intra-loops: adaptation coordination between sub-

s within a single feedback loop
* Inter-loops: adaptation coordination between multiple fee
= Loops interact using three mechanisms
 Stigmergy: loops act on a shared subsystem

 Hierarchy: an outer loop controls an inner loop
* Direct interaction: managers communicate with each other
= Feedback loop types: positive and negative Y o

Managed Element

—
 Fraunhofer Franco Zambonelli, UNIMORE, Italy
FOKUS Dhaminda Abeywickrama

A Key SOTA Pattern

= Decentralised SC pattern
 External, explicit feedback loop

- Managed Element SC .
- Sensors, effectors and SOTA goals

« Autonomic Manager (AM) :
- Handles adaptation activities of the managed element on a particular SOTA awareness

dimension
- AM has IBM’s MAPE-K model (with intra-loops within a loop)

- More AMs?
Increases the autonomicity of the managed element SC
Each AM closes a feedback loop (loops interact using stigmergy, hierarchy and direct

interaction)

Franco Zambonelli, UNIMORE, Italy

~ Fraunhofer
FOKUS

Autonomic SC Pattern with 2 Managers

Autonomic Managet
SC1
Dimension S1 lan Execute requiresa Effector
Feedback request for
Loop #1 change > Plan i i
Loop interaction Managed
tom >| _ using stigmergy
meten T Rralyze Joieon Mierarehy” | Elggaent €
| .
Monitor Knowledge requires > | gansor TRierToop
Abstract Representation of - coordination
|
; UML Acti
Monitor Intra-lo :Jrsjliﬁlsecil'gelseentaﬁcn of Gulélfdnggr% I%E;ns _pg?géﬁéﬁig‘ns (83%);-'}; B
symptom > coordinption | SOTA Goals & Utilities |
Analyze [
- SOTA]— Plan
Dimension S» request for
change > Gange
Feedback lan requires >
Loop #2 Execute
]
‘ Key
A icM — assoclation
Ut()f'l('_llI'T\%;I(C‘j2 anager, ——@ composition

Dhaminda Abeywickrama

Z Fraunhofer

FOKUS

Autonomic Service Component Pattern

Behaviour:
This pattern is designed around an explicit | g
autonomic feedback loop. Using “sensors” - Manager
the SC and the AM can perceive the

different events in the environment and |
the changes in the environment itself. B

SENSOR

-3

CONTROL J EMITTER

The AM perceives not only the
environment, but also the service request .

. . - Service
made at the component and its logic. 21 component @
Having its internal goals and utilities, the
AM manages the adaptation inside the
component, maybe changing the logic_of

EFFECTOR l " SENSOR

choosing actions in response to a service ENVIRONMENT
request.

~ Fraunhofer Franco Zambonelli, UNIMORE, Italy

FOKUS

Reactive Stigmergy Service Components Ensemble

Behaviour:

This pattern has,
not a direct .:m
feedback loop. e
Each single

component acts

Service Component

b
g
OUTPUT INPUT

(service (service
response) request}

—@

Service Component

a \ ' G
v J —

QUTPUT
{service
| response)

OUTPUT INPUT
(service (service

response) request) Service Component

FFECTOR SENSOR EFFECTOR SENSOR EFFECTOR SENSOR

like a bioinspired - iL | l | l [

component

(e.g. an ant). To satisfy its simple
goal, the SC acts in the environment that senses with its “sensors” and
reacts to the changes in it with its “effectors”. The different components are
not able to communicate one with the other, but are able to propagate
information (their actions) in the environment. Than they are able to sense
the environment changes (other components reactions) and adapt their

behaviour due to these changes.—

Franco Zambonelli, UNIMORE, Italy

\

~ Fraunhofer
FOKUS

ENVIRONMENT

Centralised AM Service Components Ensemble

Behaviour:

This pattern is

designed around an i W R w—
unique feedback N
loop. All the

components are T i

managed by a QF_% ——

unique AM that Z N
“control” all the / i |
components — ‘ h _
behzfviour and, Y= o @ > cmoen —O D oo —
sharing knowledge | |
abOUt a” the EFFECTORl SENSOR EFFECTORl Tsmsoa EFFECTOR SENSOR
components, is able

to propagate ENVIRONMENT

adaptation.

\

ﬁ Fraunhofer Franco Zambonelli, UNIMORE, Italy
FOKUS

Nikola Serbedzija, 69

SOTA Example: E- mobility

« Shift from vehicle to mobility purchasing
* Meet consumer expectations in resource-constraint mobility
« Manage infrastructure availability in resource-constraint mobility

Innovation:

*The entities of the mobility system are heterogeneous, interactions are
complex and knowledge is distributed

* Flexible adaptation in a dynamic environment

Goal:
« Self-organizing vehicles interacting with an intelligent infrastructure

—
 Fraunhofer Dhaminda Abeywickrama
FOKUS

SOTA Simulation of the E-Mobillity System

= Each SC and SCE of the case study scenario is described using:
« SOTA goals and utilities
« Awareness being monitored by the managers for a managed element
« Any contingencies that can occur
« Corresponding self-adaptive actions using SOTA feedback loops
= Adaptation handling :
« Separate Autonomic Managers (AMs) for each SOTA awareness dimension

- E.qg. electric vehicle has AMs to handle adaptation of battery state of charge, climate
comfort requirements

+ High-level AMs to handle adaptation activities involved in multiple components such
as the user and the electric vehicle

- E.g. routing
_—
 Fraunhofer Dhaminda Abeywickrama

FOKUS

. -
==t AutonomicServiceComponentDocument -~

Simulation: SOTA Decentralized SC pattern
simulated for e-mobility

i Session [45459]

user : UserCompenent

infrasiructure : InfrastructureComponent

calendar : CalendarComponent

?

&3 Analyze user infermation)

[‘—1 Provide charging statiens informatien):,_

wcentralBuffers

&S Access user accouni

—'—(U Reguest appoiniments from calendar J]

userhccount <]
r] ointman
.:(‘—I Retrieve user information \ 4

— -
Mew ve

autenomicManager5C1 : AutonomicManzger ferviceComponent

no T
& Add rides into calendar]-(—(I—l Interactive coanflict managament

Evaluate start
and return

locations for
each
appoiniment

rides and parking lot=

-, Reguest panning of]

y

&

e

monitor : Monitor

anmalyze : Analyze

[‘—' Collect temperaturs data J.

[]

(u Fiter accumulated temperature data

i{f—'ﬁather‘ P ‘ureevents)

¥

& S1OrE temperature events
inknowl=dgebase

knowledge : K

acentralBuffers scaniralBuffars
iemperatureEventsSignals. | goalsUtilitiesRep
wcentralBuffers
temperatureSymptoms

:(&S Gather adapiation goals)

= ntarprat tamparatura data
aganst patterns

Climate comfort
match user

Mot match

[U Climate comfort satisfied J preferences

Climate comfort
not satisfied

ESInterpret temperature symptoms. J

[7

o, Trigger when climate comfort
level not ok

& Store the temperaturs Symptoms J

| —
- [‘d Provide user preferences J D mm—
==

goalsUtilities : GoalsUtilities

autc i 5C2 : Auten

icManager ServiceComponent

moniter : Monitor

a & Collect battery level data j

znalyze : Analyze

(H Fiter accumulaied battery level data J

¥

- .
o Galher battery level evenis j“lkp Dint

¥

acentralBuffers

ccentralBuffers
chargingStations

temperatureC

= Store battery level events
knowledgebase

J

hknowledgle : Knowledge

2 Gather adaptation goals

.,{9

Interpret battery lewel data

against patierns]

Ok battery level

ey

Weasure
& temperature
ingide vehicle

effector : Effector

ecentralBu ffers wcentralBufiers
batteryLevelEventsSignals | goalsUtiitiesRen
wcentraBuffars
bateryLevelSymptoms.

ot az=signed

Assign parking space

& Perform geal

exzcute - Executs

Adapt climate:
LH comfort level

Send SMS to
4= driver on low

battery level

Devize plan to execute ‘1
climate comfort change)

[u

Motify climats comfort effactor 1

S
:(U Interpret battery level symptoms J

‘_]Trigger when battery
level low

|

+

battery level change

[« Devise plan to execute

S

o Battery level ok =

—
@ Batteril Bvel low

| Store the battery level
) symptoms

execute - Execute

Motify driver to perform

changes to managed element

J

{ = to perform changes to

managed elemsnt

LA 4

Feedback loop 1 (in brown)
Feedback loop 2 (in green)

Z Fraunhofer

FOKUS

Dhaminda Abeywickrama

Nikola Serbedzija, 72

Il Conclusion: Development Approach

Softvar develoment is an iterative process that proposes a doubly

connected design-runtime lifecycle for the development of service
component ensembles (SCE)

Phases and tools for the design :

Requirements Engineering for building a conceptual and operational
framework to be used to elicit and rationally represent ensembles
requirements:

« SOTA for adaptation requirements

Modeling/Programming for the specification and coding of SCEs:
« Agamemnon, BIP, KnowLang, Maude, POEM, SCEL, JRESP, Java

Verification/Validation supporting formal proofs of SCEs’ models and
code:

X BIP D-Finder, GMC, lliad,]SAM, MESS, LTSA

(model checking, deadlock finder, modelchecker for C, Integrated dDevelopment Environment ...,)

. BIP - rigorous checking of the consistency between the different design steps

Z Fraunhofer pj5,de .
FOKUS

a high-performance reflective language

POEM - atoolkit for modeling, visual debugging, developing, and deploying applications

Tool Support

Tool integration platform
the service development environment (SDE) enables loosely
coupled tools to work together by building tool chains

Tools are
bR ASCENS tools as
registered with . S
SOrvICeS

the SDE core J

SDE

O'c'f_'(view
of tools

SDE Core

dfelipse Basod on
Echipse (OSG))

_—
~ Fraunhofer Nikola Serbedija, 74
FOKUS

Further Work

= Self-aware systems [www.ascens-ist.eu]
= User behavior
- Task oriented
- Goal oriented
 Socially acceptable
= Individual adaptation
= Collective adaptation
= Trust issues
= Ethical Issues
* Privacy
* Impact
* Individual/Social consequences

\

~ Fraunhofer
FOKUS

Acknowledgement

Most of the work presented
here has been done under the
ASCENS project (project
number FP7- 257414) [7],
funded by the European
Commission within the 7th
Framework Programme (see
the web address and
consortium at the picture at the
right). Special thanks go to
the developers group of the
SCEL language (Rocco De
Nicola from IMT Lucca and his

group).

Home | Objectives

Consortium

LMU Munich

UNIPL Universita di Pisa
UDF: Universita di Firenze
Fraunhofer Gesellschaft

VERIMAG Laboratory

UNIMORE: Univ. di Modena & RE
ULB: Univ. Libre de Bruxelles

EPF Lausanne
Volkswagen AG

UL: Lero - Univ. of Limerick
Zimory GmbH

IMT Lucca

Mobsya
CUNI: Charles University
ISTI (Third Party)

Consortium Results | Work in Progress

ascens %

autonomic service-component ensembles

Publications | Related Projects | Contact

Lo=

The consortium consists of 14 partners from six EU member states (Czech Republic,
Belgium, France, Germany, Ireland and ltaly) and one non-EU state (Switzerland)

The project is science-driven with nine universities at its core complemented by three
research institutes, one large company and one SME

_—
~ Fraunhofer
FOKUS

Nikola Serbedzija, 76

