

24 March 2013

Lisboa

Service Components and Ensembles: Building Blocks for

Autonomous Systems

 - tutorial -

Nikola B. Šerbedžija

ICAS 2013 The Ninth International Conference on Autonomic and

Autonomous Systems

Nikola Šerbedžija, 2

Outline
I. Introduction (definition, abstract, motivation, approach)

II. Requirements analyses

• Practical examples

• Requirements

III. Modeling

• Approach

• SCEL

• Adaptation patterns

• Reasoning on system properties

IV. Deployment

- JRESP

- Implementation framework

V. Conclusion (discussion and further work)

𝜲

c
a
s
e
 s

tu
d

ie
s

Nikola Šerbedžija, 3

au·ton·o·mous [aw-ton-uh-muhs]

 adjective

1. Government .

a. self-governing; independent; subject to its own laws only.

b. pertaining to an autonomy.

2. having autonomy; not subject to control from outside;
independent: a subsidiary that functioned as an autonomous unit.

3. Biology .

a. existing and functioning as an independent organism.

b. spontaneous.

 Origin: Greek autónomos with laws of one's own, independent,
equivalent to auto- …

I. Definition: Autonomous

Nikola Šerbedžija, 4

I. Definition Autonomous systems

 Within the Internet, an Autonomous System (AS) is a collection of connected

Internet Protocol (IP) routing prefixes under the control of one or more network

operators that presents a common, clearly defined routing policy to the Internet.

 “Autonomous systems represent the next great step in the fusion of machines,

computing, sensing, and software to create intelligent systems capable of interacting

with the complexities of the real world. Autonomous systems are the physical

embodiment of machine intelligence”.

 Autonomous systems with multiple sensory and effector modules face the problem of

coordinating these components while fulfilling tasks such as moving towards a goal

and avoiding sensed obstacles.

 Deals with adaptation, intelligence, sensing, robotics, agent technology, self-

organization, dynamic and independent behavior, awareness, Pervasive services and

mobile computing, self-management context-aware systems, no human intervention.

𝜲

Nikola Šerbedžija, 5

Conference on Autonomic and Autonomous Systems

AUTSY: Theory and Practice of Autonomous Systems

 Design, implementation and deployment of autonomous systems;
Frameworks and architectures for component and system autonomy;
Design methodologies for autonomous systems; Composing
autonomous systems; Formalisms and languages for autonomous
systems; Logics and paradigms for autonomous systems; Ambient
and real-time paradigms for autonomous systems; Delegation and trust
in autonomous systems; Centralized and distributed autonomous
systems; Collocation and interaction between autonomous and non-
autonomous systems; Dependability in autonomous systems;
Survivability and recovery in autonomous systems; Monitoring and
control in autonomous systems; Performance and security in
autonomous systems; Management of autonomous systems; Testing
autonomous systems; Maintainability of autonomous systems

Nikola Šerbedžija, 6

TAAS

 Many current Information and Communications Technology (ICT)
systems and infrastructure, such as

• the Web, Clouds, Grids and Enterprise Datacenters, Peer-to-Peer
Systems, Social and Urban Computing Systems, Cooperative
Robotic Systems, Distributed Service Systems, and Wireless and
Mobile Computing Systems,

 have the characteristic of being

• decentralized, pervasive, and composed of a large number of
autonomous entities.

 Often systems deployed on such infrastructure need to run in highly
dynamic environments, where physical context, social context, network
topologies and workloads are continuously changing. As a
consequence, autonomic and adaptive behaviors become necessary
aspects of such systems.

Nikola Šerbedžija, 7

EU, FP7 Awareness Initiative: Challenges

•101 Awareness Challenges

•72. To have good and sustainable test bed and test environment for experiments. Nenad Stojnic

•71. Introducing economic models. Ivova Brandic

•70. Monitoring of large scale adaptive infrastructures and mobile devices. Ivova Brandic

•69. To disambiguate the awareness concepts. Ramana Reddy

•68. Checking, requirements, model, verification and validation at runtime. Hausi Muller

•67. Representation and synchronization of requirements at runtime. Nelly Bencomo

•66. To address real problems by means of exemplars. Luciano Baresi

•65. To have intelligent runtime environments that support adaptation, keeping and managing the model also at runtime. Carlo Ghezzi

•64. To exploit a graphical language in order to achieve automatic generation of engines. Tom Keeley

•63. To have an appropriate mathematical base. Franco Bagnoli

•62. To enable adaptive systems to learn online. Peter Lewis

•61. How to describe and to compare information? Yvonne Bernard

•60. How to ensure safety and correctness? Manuele Brambilla

•59. How to manage the relationship between individual and group levels? Carlo Pinciroli

•58. How to achieve adatpivity at runtime? Martin Wirsing

•57. How to engineer decision systems? Henry Bensler

•56. How to map raw data to knowledge? Emil Vassev

•55. Dealing with high and low levels of contexts. Wei Dai

•54. Considering sociological aspects besides technical aspects. Francois Toutain

•53. Letting different systems interoperate and collaborate. Guillame Dugue

•52. How to measure the level of awareness? E.g. the number of variables AND the algorithm that processes the information from the variables. Gusz Eiben

•51. Measuring and finding metrics for the different kinds of awareness. Franco Zambonelli

•50. The difficulty of writing precise requirements about flexibility. Peter Lewis

•49. The difficulty of proving all the properties of an emergent system. Jose Luis Fernandez

•48. How to improve the communication between local and global systems in swarm robotics?: Matthias Holzl

•47. Monitoring and controlling emergent properties and specifying and controlling adaptation: Martin Wirsing

•46. How to know whether a system is aware and the issue of global and local awareness: Rocco De Nicola

•45. How can services understand what they really need?: Gabriella Castelli

•44. How do we formally understand what trust is?: Alois Ferscha

•43. How robot controllers (mind) and mechanical parts (body) can co-evolve? : Evert Haasdijk

•42. Using competition across the fields to push the research further and faster: Julie McCann

•41. How is this research going to contribute to the challenges of global warming and sustainability?: Jeremy Pitt

•40. To have efficient computation: Frederic Gruau

•39. How modeling can be considered in the development: Alan Brook

•38. To bring together experimental and theoretical communities: Colette Johnen

•37. To develop ubiquitous platforms: Stefan Dulman

•36. Adaptability, evolvability, diversity, spatiality: Akla-Esso Tchao

•35. To have an operation definition of self-awareness: Giuseppe Valetto

•34. What actually is a self-organising system and how to build it? Ingo Scholtes

•33. To model the context and to validate the model itself: Daniel Dubois

•32. To define real grounded application scenarios: Marco Mamei

•31. Definition and metrics of self-awareness: Paul Snyder

•30. How to engineer the system to produce the correct emergent behavior? Christopher Hollander

•29.To make systems actually know what happens inside them: Rolf Kiefhaber

•28. How can we say that a system is self-aware? Peter Lewis

•27. Collective self-awareness from not self-aware components: Peter Lewis

•26. Systems that exhibit self-awareness as emerging properties: Peter Lewis

•25. How do components make themselves aware of the surrounding (open) environment?: Xinghui Zhao

•24. To analyze the emerging patterns in evolving behaviors: Andres Ramirez

•23. To be aware of what awareness actually means: Jean Botev

•22. To be aware of neighbours: Venkatraman Iyer

•21. To combine computer science with social science: Frank Schweitzer

•20. How to make aware components behave to reach a global optimum? Julia Shaumeier

•19. How we can learn from human self-awareness? Nils Rosemann

•18. To develop techniques to control self-organization: Holger Prothmann

•17. To model, test and verify self-aware systems: Giovanna di Marzo Serugendo

•16. To bring computers near a level where humans are, not humans down: Glen Fink

•15. To define when autonomic systems are beneficial or detrimental to a given domain or application: Cortney Riggs

•14. To develop methodologies and tools to engineer systems: Sven Bruckner

•13. To build a better theory to analyze the data from the models and from real world: Sven Bruckner

•12. To build better models to understand the basic principles of self-*: Sven Bruckner

•11. Grand challenge in Self-Awareness? Real-world apps, with real hard requirements - best research driver there is! Tom Holvoet

•10. Find construction rules of artificial self-aware systems by revealing the common core in natural collective systems: Thomas Schmickl

•9. Evolving the step from environmental awareness to self-awareness: Thomas Schmickl

•8. The role of conservation laws in collective awareness-exchange of mass & energy vs. exchange of information: Thomas Schmickl

•7. Evolving a collective system that exhibits self-awareness and environmental awareness from scratch: Thomas Schmickl

•6. Sensors, sensors, sensors: given the volume of interesting data available, how can services understand what they need: SAPERE

•5. In systems with dynamic service composition, how can we achieve system-level self-awareness of service components? Giacomo Cabri

•4. Create collective embodied systems where self-healing emerges in response to adverse internal/external conditions: Jon Timmis

•3. Incentivising users to cooperate by providing access to location data/social groups to study natural human mobility: Walter Colombo

•2. To understand self-awareness in autonomic systems we must first understand the boundaries of self-over time, context and scale: Ben Paechter

•1. How can distributed systems with no central controller become collectively self-aware, rather than at individual node level? Emma Hart

Nikola Šerbedžija, 8

I. Abstract

 Developing autonomous systems requires adaptable and context
aware techniques.

 The approach described here decomposes a complex system into
service components – functionally simple individual entities enriched
with local knowledge attributes.

 The internal components’ knowledge is used to dynamically construct
ensembles of service components.

 Thus, ensembles capture collective behavior by grouping service
components in many-to-many manner, according to their communication
and operational/functional requirements.

 Linguistic constructs and software tools have been developed to support
modeling, validation, development and deployment of autonomous
systems. A strong pragmatic orientation of the approach is illustrated by
a concrete application.

Keywords: Engineering Complex Autonomous Systems, Awareness in software, Adaptive components,

Reasoning about system properties, Case studies (Swarm robotics, Cloud Computing, E-mobility).

1. www.ascens-ist.eu/

2. http://www.aware-project.eu/

3. http://www.fokus.fraunhofer.de/de/quest/projekte/laufende_projekte/ascens/index.html

Nikola Šerbedžija, 9

I. Motivation - System Needs

 Nowadays, we deal with distributed (software intensive) systems with
a massive number of nodes with highly autonomic behavior still having
harmonized global utilization of the overall system. Some features:

• Self-awareness and adaptation while operating in unknown environments
or reducing management costs.

• Maintenance of major properties even when adapting, e.g., mutual
exclusion, fault tolerance, optimal energy level, distributed access, etc.

 Grand challenge in software engineering – how to organize, program
and reason about these systems

 Our everyday life is dependent on new technology which poses extra
requirements to already complex systems:

• we expect systems to adapt to changing demands over a long operational
time and

• we need reliable systems whose properties can be guaranteed

• to optimize their energy consumption .

Nikola Šerbedžija, 10

I. Approach

One engineering response to these challenges is to structure software
intensive systems in ensembles of simple service components featuring
autonomous and self-aware behavior.

 Modeling:

• provide formalisms,

• linguistic constructs and

• programming tools

featuring autonomous and adaptive behavior based on awareness!

 Integration of:

• Functional-,

• Operational- and

• Energy- awareness

to provide autonomous behavior with reduced energy consumption!

Awareness is the state

or ability to perceive, to

feel, or to be conscious of

events, objects, or

sensory patterns.

Nikola Šerbedžija, 11

Service Components and Ensembles

 𝜲

 𝜲

Nikola Šerbedžija, 12

Overview Approach

 𝜲 𝜲

Nikola Šerbedžija, 13

II. Requirements Analyses

To explore the system requirements, three complex application
domains are closely examined:

1. www.ascens-ist.eu/

2. http://www.aware-project.eu/

3. http://www.fokus.fraunhofer.de/de/quest/projekte/laufende_projekte/ascens/index.html

Swarm robotics

Cloud computing

E-mobility

Nikola Šerbedžija, 14

II. Application Domain

 E-mobility is a vision of future transportation by means of electric

vehicles network allowing people to fulfill their individual mobility
needs in an environmental friendly manner (decreasing pollution,
saving energy, sharing vehicles, etc.)

 Cloud computing is an approach that delivers computing resources to
users in a service-based manner, over the internet, thus re-enforcing
sharing and reducing energy consumption).

 Swarm robotics as a multi-robot system that through interaction
among participating robots and their environment can accomplish a
common goal, which would be impossible to achieve by a single robot.

At a first glance electric vehicular transportation, distributed
computing on demand and swarm robotics have nothing really in
common!

Nikola Šerbedžija, 15

II. Major Application Characteristics

For modeling purposes the following characteristics are observed:

• Single entity (service components)

- Individual goal

• Grouping (ensembles)

- Global goal

• Self-awareness

• Adaptation

• Autonomous and collective behavior

• Optimization and

• Robustness

Nikola Šerbedžija, 16

II. Common Characteristics

Comm.

features

Swarm Robotics Cloud computing E-Mobility

Single entity Individual robots Computing resource Driver, vehicle, park place,

charging station

Individual goal Performing certain task Efficient execution Individual route plan, optimize

energy, …

Ensemble A group of cooperative robots

with a same task

application, cpu pool, … Common rout, free vehicles, free

park places, etc

Global goal Coordinated and autonomous

behavior

Resource availability, optimal

throughput, …

Travel and journey optimization,

low energy

Self-awareness Knowledge about own

capabilities

Available resources;

computational requirements, …

Awareness of own state and

restrictions

Adaptation According to environmental

changes, other

entities, goals, etc

According to available

resources

According to traffic, individual

goals, infrastructure, resource

availability

Autonomous

vs. collective

behavior

Optimal coordination of single

entities in joint endeavor

Decentralized decision making,

global optimization

Reaching all destinations in time,

minimizing costs

Optimization Time, energy, performance Availability, computational task

execution

Destination achievement in time,

vehicle/infrastructure usage

Robustness Hardware failures, sensory

noise, limited sensory range and

battery life

Failing resources Range limitation, charging battery

infrastructure resources

Nikola Šerbedžija, 17

This set of common features serve as a basis for modeling of such
systems leading to a generic framework for developing and
deploying complex autonomic systems.

Four major (autonomic system) principles are:

• Knowledge (facts about self- and surrounding)

II. Common Characteristics (cont.)

• Adaptation (dynamic and long-term self-modification to changing
surroundings)

• Self-awareness (re-examination of own state)

• Emergence (simple system elements construct complex entities).

Nikola Šerbedžija, 18

III Modeling

 Control systems for the three application domains have many common
characteristics: they are highly collective, constructed of numerous
independent entities that share common goals. Their elements are both
autonomous and cooperative featuring a high level of self-awareness
and self-expressiveness.

 A control system built out of such entities must be robust and adaptive
offering maximal utilization with minimal energy and resource use.

Nikola Šerbedžija, 19

III Modeling: Service Components and Ensembles

A complex system is decomposed in

• SCs - service components - major individual entities,

• SCEs - service component ensembles - composition structures

that reflect communication

Further properties:

• SCs – are single system entities that have their requirements and

functionality, usually representing their individual goals,

• SCEs –are collections of service components usually representing

collective system goals (as means to dynamically structure

independent and distributed system entities).

Nikola Šerbedžija, 20

III Modeling: Service Components and Ensembles

Nikola Šerbedžija, 21

Case Studies

Resource ensembles as science clouds

science cloud platform as a Platform as a

Service (PaaS) solution. One scenario

considers that a science cloud platform goes

offline, which means the applications there has

to be made available oat one or more of other

nodes

Ensembles of self-aware robots

used to perform the most dangerous activities,

for example in a disaster recovery scenario:

find and remove a dangerous object in presence

of obstacles.

Ensembles of cooperative vehicles

for providing a user with a seamless daily travel

plan, a sequence of destinations with possibly

different travel modes and resource

requirements

Nikola Šerbedžija, 22

Ensembles Building

 Ensemble can be made
of same service
component types with
common goal

 Ensemble can be made
of different service
component types with
matching goals

Goals can be defined by
any function or predicate

Nikola Šerbedžija, 23

Symbol SC: Service
Component

Knowledge Goals

Obstacles/

bricks
Dimension, shape, weight Protecting shape

construction

robots with

a grip

Movements, grip

capabilities, battery state

Cary the object for one to

another location

Targets Location, weight, shape Movement

foraging

robots

Movements, battery state Finding objects,

Information propagation

Swarm Robotics

Nikola Šerbedžija, 24

Symbol SC: Service
Component

Knwledge Goals

User

applications

the requests for execution

(in terms of CPU, minimal

space, etc.).

Efficient execution.

Remote

computer

CPUs

processing capabilities

and a current utilization

Optimal utilisation

Local memory
Capacity, current

occupacy

Balanced use

Local

application

services

available appis at the local

computer

Appies “advertising”

Cloud computing

Nikola Šerbedžija, 25

Symbol SC: Service
Component

Knwledge Goals

Users

Route plan to reach different places
in a given time.

E-vehicles

occupancy and

the battery state

to serve users plans,

optimize energy
consumption

Charging stations Capacity/

Reservation plan

optimize its use (high
throughput)

Park places Capacity/

Reservation plan

optimize its use

E-mobility

Nikola Šerbedžija, 26

III Modeling Examples (Ensembles)

E-Mobility

• A user, 2 vehicles, 1

charging station and 3

parklaces

• 3 vehicles that are available

for sharing

• 3 users ready to share

vehicles

• 4 basic service

components: users,

vehicles, charging stations

and park places

 Cloud Computing

• A user application, 2 remote

computers, with local memory

of appropriate size and for

supporting apples.

• 3 remote computers

• 3 different applications with

similar processing and

memory requirements

• 4 basic service components:

users applications, remote

CPUs, local memory and appis

Swarm Robotics

• A task: one obstacle, two

robots, one target and three

foraging robots

• 3 free robots with a grip

• 3 obstacles to be removed

• 4 basic service components:

obstacles, robots with a grip,

targets, foraging robots

Nikola Šerbedžija, 27

• A set of programming abstractions that permit to directly represent
behaviors, knowledge and aggregations according to specic
policies, and to support programming self- and context-awareness,
and adaptation.

• The main novelty of the language is the way sets of partners are
selected for interaction. The single component has the possibility
of directly identifying the partners of a communication but can also
select them by exploiting the notion of attribute-based
communication.

• Ensembles are formed according to predicates over interfaces'
attributes, representing specific properties, like spatial coordinates
or group memberships, and properties that they can guarantee like
security, trust level or response time.

III SCEL: Modeling language

Nikola Šerbedžija, 28

III SCEL: Modeling language (cont.)

 Behaviors describe how
computations progress.

 Interface provides a set of
attributes characterising the
component itself

 Knowledge is represented
through items containing either
application data or awareness
data

 Policies control and adapt the
actions of the different
components in order to
guarantee achievement of
specific goals or satisfaction of
specific properties

 Attribute based communication

•Ensembles are formed according

 to predicates over attributes

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, “SCEL: a

language for autonomic computing”, Technical Report,.

Nikola Šerbedžija, 29

 Systems: S ::= C | S1 ‖ S2 | (νn)S

 Components: C ::= Ι[Κ,∏,P]

 Processes: P ::= nil | а.P | P1 + P2 | P1[P2] | X | A(p)

 Actions: a ::= get(T)@c | qry(T)@c | put(t)@c | new(Ι,Κ,∏,P)

 Targets: c ::= n | x| self | P | Ι.p

 To execute SCEL programs, the jRESP framework has been developed.
This is a Java runtime environment providing means to develop
autonomic and adaptive systems programmed in SCEL [*].

 M. Loreti. jRESP: a run-time environment for scel programs.

 Technical Report (September 2012) http://rap.dsi.unifi.it/scel/.

III SCEL Syntax

Nikola Šerbedžija, 30

SCEL Processes

 P ::= nil | а.P | P1 + P2 | P1[P2] | X | A(p)

Processes are the active computational units. Each process is built up
from the inert process nil via action prefixing (a.P), nondeterministic
choice (P1 + P2), controlled composition (P1[P2]), process variable (X),
and parameterized process invocation A(p).

The construct P1[P2] abstracts the various forms

 of parallel composition commonly used in process calculi. Process
variables can support higher-order communication, namely the capability
to exchange (the code of) a process, and possibly execute it, by first
adding an item containing the process to a knowledge repository and
then retrieving/withdrawing this item while binding the process to a
process variable.

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, “SCEL: a

language for autonomic computing”, Technical Report,.

Nikola Šerbedžija, 31

SCEL Actions

 Actions and targets. Processes can perform five different kinds of
actions:

• get(T)@c, qry(T)@c and put(t)@c

are used to manage shared knowledge repositories by withdrawing/retrieving/
adding information items from/to the knowledge repository c. These actions
exploit templates T as patterns to select knowledge items t in the repositories.
They heavily rely on the used knowledge repository and are implemented by
invoking the handling operations it provides.

• fresh(n)

introduces a scope restriction for the name n so that this name is guaranteed to
be fresh, i.e. different from any other name previously used.

• new(IΙ[Κ,∏,P])

creates a new component Ι[Κ,∏,P]

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, “SCEL: a

language for autonomic computing”, Technical Report,.

Nikola Šerbedžija, 32

SCEL Targets

c ::= n | x| self | P | Ι.p

Different entities may be used as the target c of an action. Component

names are denoted by n, n0, . . . , while variables for names are denoted

by x, x0,

The distinguished variable self can be used by processes to refer to the

name of the component hosting them.

The target can also be a predicate P or the name p of a predicate exposed

as an attribute in the interface I of the component that may dynamically

change.

A predicate could be a boolean-valued expression obtained by applying

standard boolean operators to the results returned by the evaluation of

relations between attributes and expressions.

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, “SCEL: a

language for autonomic computing”, Technical Report,.

Nikola Šerbedžija, 33

SCEL Systems and Components

 Systems aggregate components through the composition
operator . It is also possible to restrict the scope of a
name, say n, by using the name restriction operator (vn)_ .

 Thus, in a system of the form , the effect of the
operator is to make name n invisible within S1.

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, “SCEL: a

language for autonomic computing”, Technical Report,.

Nikola Šerbedžija, 34

Building Ensembles

 Thus, actions put(t)@n and put(t)@P give rise to two different primitive forms
of communication: the former is a point-to-point communication, while the
latter is a sort of group-oriented communication.

 The set of components satisfying a given predicate P used as the target of a
communication action can be considered as the ensemble with which the
process performing the action intends to interact.

 For example, the names of the components that can be members of an
ensemble can be fixed via the predicate





R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, “SCEL: a

language for autonomic computing”, Technical Report,.

Nikola Šerbedžija, 35

SCEL Modeling Example: Swarm Robotics

• Francesco Mondada, EPFL,

• Carlo Pinciroli, ULB

Nikola Šerbedžija, 36

Actual Robots

Foraging robots Robots with a grip

Nikola Šerbedžija, 37

SCEL Example

Each robot is rendered in SCEL as a component where
the managed element ME is as follows:



This process retrieves from the knowledge repository the process
implementing the current control step and bounds it to a variable X, executes
the retrieved process and waits until it terminates.

 The autonomic manager AM is defined as follows:

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, “SCEL: a

language for autonomic computing”, Technical Report,.

Nikola Šerbedžija, 38

jRESP Framework for SCEL

Nikola Šerbedžija, 39

SCEL: Complete Robot Scenario

R. De Nicola, M. Loreti, R.Pugliese, and F. Tiezzi, “SCEL: a

language for autonomic computing”, Technical Report,.

Nikola Šerbedžija, 40

jRESP: Implemengationm of Robot Scenario

Nikola Šerbedžija, 41

SCEL: E-Mobility Example

 Components and their interactions

 Travel desires of drivers

 Individual EVs and EV fleets

 Traffic and road network

 Charging and energy network

Challenges

 Intelligent knowledge distribution

 Predicting e-vehicle travel time and
energy

 Travel planning

Nikola Šerbedžija, 42

User Perspective

 Goals

• Guarantee to reach each user destination in time

• Maximize the fulfillment rate of the user preferences

 Awareness issues

• User schedule

• User preferences

 Task

• Planning the user's journey

 Actions

• Acquire and distribute information

• Manage temporal conflicts of the user schedule

• Manage travel modalities

Nikola Šerbedžija, 43

Vehicle Perspective

 Goal

• Optimal travel sequence without violating constraints

 Awareness issues

• Current and predicted internal vehicle states

• Current and future trips

 Task

• Planning of the vehicle journeys

 Actions

• Acquire and distribute information

• Planning individual vehicle trips

• Planning resource usage (parking, charging slots)

Nikola Šerbedžija, 44

Infrastructure Perspective

 Goal

• Optimal capacity usage of the infrastructure resource

• Guarantee quality-of-service

 Awareness issues

• Bookings

• Availability estimate

• Price-sales-function for infrastructure demand

 Task

• Supply and demand management

 Actions

• Acquire and distribute information

• Manage bookings

• Manage pricing

Nikola Šerbedžija, 45

E-Mobility Service Components

Nikola Šerbedžija, 46

Soft Constraint Logic Programming

 Formalization of the eMobility planning problem

 Multi-criteria shortest path problem on the trip-level

 SCLP model on the journey level to find non-dominated optimal journeys

Nikola Šerbedžija, 47

Modeling the Jorney

Nikola Šerbedžija, 48

Programming Model

CIAO Prolog:

Nikola Šerbedžija, 49

SCEL Modelling: Main Scenario

P1

P2

P3

P4

P5

POI1

POI2

POI3

POI4

POI2

POI1

POI3

Calendar

9:00

10:00

12:00

14:00

16:00

POIj = j-th point of interest Pi

P1

= i-th parking lot

Nikola Šerbedžija, 50

Involved entities

VEHICLE:

• Asks information to parking lots close to the POIs

• Provides this information to the planner, which generates the plan (i.e. the list

of parking lots to be reserved)

• Books the planned parking lots

• Monitors the execution of the plan

PARKING LOT:

• Manages (accepts) the requests of booking

Nikola Šerbedžija, 51

Scenario in SCEL: Components

Vehicles and parking lots are SCEL components

running the following processes:

 = ContactParkingLots[Planner[Book[MonitorPlanExecution]]]

 = ProvideParkingData[ManageBookings] P1

Nikola Šerbedžija, 52

Scenario in SCEL: vehicle component

VEHICLE:

• Asks information to parking lots close to the POIs

• Provides this information to the planner, which generates the plan (i.e.

the list of parking lots to be reserved)

• Books the planned parking lots

• Monitors the execution of the plan

PARKINGLOT:

• Manages (accepts) the requests of booking

Nikola Šerbedžija, 53

Parking Lots close to POIs as Ensembles

POI1

POI2

POI3

POI2

POI1

POI3

Calendar

9:00

10:00

12:00

14:00

16:00

P1

P2

P3

P5

ATTRIBUTES

● type: parking lot component

● position: position of the park

● ...

Nikola Šerbedžija, 54

Parking Lots close to POIs as Ensembles

POI1

POI2

POI3

POI2

POI1

POI3

Calendar

9:00

10:00

12:00

14:00

16:00

P1

P2

P3

P5

Walking distance

ENSEMBLE FOR POI2

Group of components with

type parking lot and

position at walking

distance from POI2

Nikola Šerbedžija, 55

POI1

POI2

POI3

POI2

POI1

POI3

Calendar

9:00

10:00

12:00

14:00

16:00

P1

P2

P3

P5

Parking Lots close to POIs as Ensembles

put@EnsembleOfPOI2

Nikola Šerbedžija, 56

Vehicle component

VEHICLE = ContactParkingLots[Planner[Book[MonitorPlanExecution]]]

ContactParkingLots =

 //read the size of the calendar (i.e. the list of appointments)

 qry(“calendarSize”, ?n)@self .

 //scan the calendar

 for(i := 0 ; i < n ; i ++){

 //read an appointment of the calendar

 qry(“calendar”, i, ?poi, ?poiPos, ?when, ?howLong)@self .

 //contact the parking lots near to the POI (resorting to attribute-based communication)

 put(“searchPLot”, self, poi)@{I.type=“PLot”  walkingDistance(poiPos,I.pos)}

 }

 //signal the completion of the phase of requirement of data to the parking lots

 put(“dataRequestSent”)@self

Ensemble predicate

Nikola Šerbedžija, 57

VEHICLE = ContactParkingLots[Planner[Book[MonitorPlanExecution]]]

Planner =

 //wait the completion of the phase of requirement of data to the parking lots

 get(“dataRequestSent”)@self .

 // we intentionally leave unspecified this process

 //input: collection of tuples of the form poi, pLotId, pLotInfo received from the pLots

 //output: list of chosen planned pLots,

 i.e. planListSize”, nplan”, 0, pLotId0, when0, howLong0...plan”, n - 1, ...

 //signal the conclusion of the planning phase

 put(“planningCompleted”)@self

Vehicle component (cont.)

Nikola Šerbedžija, 58

VEHICLE = ContactParkingLots[Planner[Book[MonitorPlanExecution]]]

Book =

 //wait the completion of the planning phase

 get(“planningCompleted”)@self .

 //read the size of plan list (i.e. the pLots to be booked)

 get(“planListSize”, ?n)@self .

 //scan the plan

 for(i := 0 ; i < n ; i ++){

 //read an entry of the plan list

 get(“plan”, i, ?pLot, ?when, ?howLong)@self .

 //send the booking request to the pLot

 put(“book”, self, when, howLong)@pLot .

 //wait for the reply of pLot (we assume that booking requests always succeed)

 get(“bookingOutcome”, true)@self .

 //store the reservation in the list of reservations

 put(“reservation”, i, pLot, when, howLong)@self

 }

 //close the list of reservations

 put(“reservationListSize”, n)@self .

 //signal the conclusion of the booking phase

 put(“bookingCompleted”)@self

Vehicle component (cont.)

Nikola Šerbedžija, 59

VEHICLE = ContactParkingLots[Planner[Book[MonitorPlanExecution]]]

MonitorPlanExecution =

 //wait the completion of the booking phase

 get(“bookingCompleted”)@self .

 //read the size of reservation lists (i.e. the pLots to be visited)

 get(“reservationListSize”, ?n)@self .

 //scan the reservation list

 for(i := 0 ; i < n ; i ++){

 //read a reservation

 get(“reservation”, i, ?pLot, ?when, ?howLong)@self .

 //display to the user the information about the next reservation

 put(“reservation”, ?pLot, ?when, ?howLong)@screen .

 //wait for the arrival to the parking lot (signalled by the user)

 get(“arrivedAt”, pLot)@self .

 }

 //signal the conclusion of the plan execution phase

 put(“planExecuted”)@self

Vehicle component (cont.)

Nikola Šerbedžija, 60

Parking Lot Component

PARKINGLOT = ProvideParkingData[ManageBookings]

ProvideParkingData =

 //get a request of data about the parking lot

 get(“searchPLot”, ?requester, ?poi)@self .

 //provide the requested data (we intentionally leave unspecified the provided informations)

 plotInfo := ...

 put(poi, self, plotInfo)@requester .

 //handle next request

 ProvideParkingData

ManageBookings =

 //get a booking request

 get(“book”, ?requester, ?when, ?howLong)@self .

 //accept and store the booking

 put(“booking”, when, howLong, requester)@self .

 put(“bookingOutcome”, true)@requester .

 //handle next request

 ManageBooking

Nikola Šerbedžija, 61

SOTA (State of The Affairs) Adaptation Model

Franco Zambonelli, UNIMORE, Italy

Dhaminda Abeywickrama

 A general n-dimensional model for
modeling the adaptation requirements

 SOTA goals (states) and utilities (conditions)

 Self-awareness:

• Ability to autonomously recognize its current
position and direction of movement in the
SOTA space

 Self-adaptation:

• Ability to dynamically direct the trajectory in
the SOTA space

 Need for feedback loops

• SOTA self-adaptation patterns

The trajectory of an entity in the SOTA space

Nikola Šerbedžija, 62

A Simulation Tool for Adaptation Pattern

Eclipse-based simulation plug-in for the engineering (i.e. explicit
modeling, simulating and animating, and validating) of SOTA
patterns based on feedback loops

• Validation of the approach:

- E-mobility case study’s individual driver planning scenario (basic scenario)

• Environment used:

- IBM Rational Software Architect Simulation Toolkit 8.0.4

Franco Zambonelli, UNIMORE, Italy

Dhaminda Abeywickrama

Nikola Šerbedžija, 63

Key Goals of the Plug-in

 Modeling of the SOTA patterns using UML 2–patterns’ structural &
behavioral information modelled using activity, sequence and composite
structure diagrams

 Visual animation of the SOTA patterns’ behavior during execution to
expose the runtime view (next element to execute, executed element,
active states, tokens)

 Animating composite structure of the SOTA patterns, e.g. interaction
messages and token flows, and execution history information

 Model-level debugging and detailed control of execution of the patterns,
e.g. breakpoints, stepping, suspend, resume, terminate

 Run-time prompting during patterns simulation

Dhaminda Abeywickrama

Nikola Šerbedžija, 64

Notion of Feedback Loops Explored in SOTA

 Extends the IBM’s MAPE-K adaptation model (monitor, analyze, plan and
execute over a knowledgebase) with multiple and interacting feedback control
loops

 Feedback structure with multiple control loops :

• Intra-loops: adaptation coordination between sub-loops within a single feedback loop

• Inter-loops: adaptation coordination between multiple feedback loops

 Loops interact using three mechanisms :

• Stigmergy: loops act on a shared subsystem

• Hierarchy: an outer loop controls an inner loop

• Direct interaction: managers communicate with each other

 Feedback loop types: positive and negative

Franco Zambonelli, UNIMORE, Italy

Dhaminda Abeywickrama

Nikola Šerbedžija, 65

A Key SOTA Pattern

 Decentralised SC pattern

• External, explicit feedback loop

• Managed Element SC :

- Sensors, effectors and SOTA goals

• Autonomic Manager (AM) :

- Handles adaptation activities of the managed element on a particular SOTA awareness

dimension

- AM has IBM’s MAPE-K model (with intra-loops within a loop)

- More AMs?

Increases the autonomicity of the managed element SC

Each AM closes a feedback loop (loops interact using stigmergy, hierarchy and direct

interaction)

Franco Zambonelli, UNIMORE, Italy

Nikola Šerbedžija, 66

Autonomic SC Pattern with 2 Managers

Dhaminda Abeywickrama

Nikola Šerbedžija, 67

Autonomic Service Component Pattern

Behaviour:

This pattern is designed around an explicit

autonomic feedback loop. Using “sensors”

the SC and the AM can perceive the

different events in the environment and

the changes in the environment itself.

The AM perceives not only the

environment, but also the service request

made at the component and its logic.

Having its internal goals and utilities, the

AM manages the adaptation inside the

component, maybe changing the logic of

choosing actions in response to a service

request.

Franco Zambonelli, UNIMORE, Italy

Nikola Šerbedžija, 68

Reactive Stigmergy Service Components Ensemble

Behaviour:

This pattern has

not a direct

feedback loop.

Each single

component acts

like a bioinspired

component

(e.g. an ant). To satisfy its simple

goal, the SC acts in the environment that senses with its “sensors” and

reacts to the changes in it with its “effectors”. The different components are

not able to communicate one with the other, but are able to propagate

information (their actions) in the environment. Than they are able to sense

the environment changes (other components reactions) and adapt their

behaviour due to these changes.

Franco Zambonelli, UNIMORE, Italy

Nikola Šerbedžija, 69

Centralised AM Service Components Ensemble

Behaviour:

This pattern is
designed around an
unique feedback
loop. All the
components are
managed by a
unique AM that
“control” all the
components
behaviour and,
sharing knowledge
about all the
components, is able
to propagate
adaptation.

Franco Zambonelli, UNIMORE, Italy

Nikola Šerbedžija, 70

SOTA Example: E- mobility

• Shift from vehicle to mobility purchasing

• Meet consumer expectations in resource-constraint mobility

• Manage infrastructure availability in resource-constraint mobility

Innovation:

•The entities of the mobility system are heterogeneous, interactions are

complex and knowledge is distributed

• Flexible adaptation in a dynamic environment

Goal:

• Self-organizing vehicles interacting with an intelligent infrastructure

Dhaminda Abeywickrama

Nikola Šerbedžija, 71

SOTA Simulation of the E-Mobility System

 Each SC and SCE of the case study scenario is described using:

• SOTA goals and utilities

• Awareness being monitored by the managers for a managed element

• Any contingencies that can occur

• Corresponding self-adaptive actions using SOTA feedback loops

 Adaptation handling :

• Separate Autonomic Managers (AMs) for each SOTA awareness dimension

- E.g. electric vehicle has AMs to handle adaptation of battery state of charge, climate

comfort requirements

• High-level AMs to handle adaptation activities involved in multiple components such
as the user and the electric vehicle

- E.g. routing

Dhaminda Abeywickrama

Nikola Šerbedžija, 72

Simulation: SOTA Decentralized SC pattern
simulated for e-mobility

Dhaminda Abeywickrama

Nikola Šerbedžija, 73

III Conclusion: Development Approach

Softvar develoment is an iterative process that proposes a doubly

connected design-runtime lifecycle for the development of service

component ensembles (SCE)

Phases and tools for the design :

Requirements Engineering for building a conceptual and operational

framework to be used to elicit and rationally represent ensembles

requirements:

• SOTA for adaptation requirements

Verification/Validation supporting formal proofs of SCEs’ models and

code:

• BIP D-Finder, GMC, Iliad, jSAM, MESS, LTSA

• (model checking, deadlock finder, modelchecker for C, Integrated dDevelopment Environment …,)

Modeling/Programming for the specification and coding of SCEs:

• Agamemnon, BIP, KnowLang, Maude, POEM, SCEL, jRESP, Java

BIP - rigorous checking of the consistency between the different design steps

Maude - a high-performance reflective language

POEM - a toolkit for modeling, visual debugging, developing, and deploying applications

𝜲

Nikola Šerbedžija, 74

Tool Support

Tool integration platform

the service development environment (SDE) enables loosely

coupled tools to work together by building tool chains

Nikola Šerbedžija, 75

Further Work

 Self-aware systems

 User behavior

• Task oriented

• Goal oriented

• Socially acceptable

 Individual adaptation

 Collective adaptation

 Trust issues

 Ethical Issues

• Privacy

• Impact

• Individual/Social consequences

[www.ascens-ist.eu]

Nikola Šerbedžija, 76

Acknowledgement

Most of the work presented

here has been done under the

ASCENS project (project

number FP7- 257414) [7],

funded by the European

Commission within the 7th

Framework Programme (see

the web address and

consortium at the picture at the

right). Special thanks go to

the developers group of the

SCEL language (Rocco De

Nicola from IMT Lucca and his

group).

