### **INFOCOMP 2013**

**Exa-Intelligence**:

Next Generations of Intelligent Multi-Agent and High End Computing Systems in Development and Practice

November 18, 2013, Lisbon, Portugal

The Third International Conference on Advanced Communications and Computation (INFOCOMP 2013)



INFOCOMP November 17–22, 2013 - Lisbon, Portugal



### INFOCOMP International Expert Panel: Exa-Intelligence

### Panelists

- Claus-Peter Rückemann (Moderator), Leibniz Universität Hannover / Westfälische Wilhelms-Universität Münster (WWU) / North-German Supercomputing Alliance (HLRN), Germany
- *Paulo Leitão*, Polytechnic Institute of Bragança, Bragança, Portugal
- *Udo Inden,* Cologne University of Applied Sciences, Cologne, Germany
- Andy Georgi, Technische Universität Dresden, Center for Information Services and High Performance Computing (ZIH), Germany
- Yenumula B. Reddy, Department of Computer Science, Grambling State University, USA
- *Wassim Abu Abed*, Institute for Computational Modeling in Civil Engineering, Technische Universität Braunschweig, Germany

INFOCOMP 2013: http://www.iaria.org/conferences2013/INFOCOMP13.html

### INFOCOMP International Expert Panel: Exa-Intelligence

### **Related Topics for Audience Discussion:**

- Scientific, technical, and high end issues,
- Challenges and experiences from disciplines (natural sciences, technical applications, ...),
- Intelligent and autonomous components,
- Software Defined Networks,
- Parallelisation and localisation,
- High and low level issues,
- Challenges with numerical implementations,
- Suggested application scenarios,
- Knowledge discovery,
- Long-term issues,
- Integration of multi-disciplinary data,
- . . .

### INFOCOMP International Expert Panel: Exa-Intelligence

### **Panel Statements:**

- Key-terms: Intelligent systems, multi-agent systems, sustainable long-term knowledge discovery, multi-disciplinary context, ...
- **Intelligent systems:** Very large industrial operations, very large numbers of interacting systems.
- Learning processes: Training, ontologies, semantic technologies, on-the-fly, ramp-ups, and learning curves.
- High End Computing: Intelligent use of resources.
- Integrated Information and Computing Systems needed: Resources for computing and storage (application scenarios in natural sciences, geosciences, archaeology, medicine, ...).
- **Complexity and decision:** Management processes, stabilisation, (fast!) decision making, modularisation of components and technologies, parallel processes, interfaces, policies.
- Long-term knowledge resources: Multi-disciplinary, universal classification, long-term vitality, sustainability, ...
- **Resources management:** Reduce complexity from planning to operation, with hardware and software.

(日) (日) (日)

### INFOCOMP International Expert Panel: Exa-Intelligence

### Wrapup:

- Intelligence: Why intelligent systems?
- Integration and complexity: Which challenges do we encounter?
- **Physics and engineering:** What to expect beyond numerics and big data?
- Computing and storage requirements: Key issues?
- Efficiency and resources: Where to go for efficient modelling?
- Infrastructures, frameworks, applications: What do we need?
- **Discovery:** How can ontologies and knowledge discovery tame complexity?
- Your ideas: Who and what are we creating and operating high end systems for? Why does general progress take so long?
- Sustainability: Perspectives for infrastructures?
- Call for Collaboration: Who can contribute and collaborate?

伺 と く ヨ と く ヨ と

INFOCOMP Expert Panel: Post-Panel-Discussion Summary

### INFOCOMP Expert Panel: Post-Panel-Discussion Summary

### Post-Panel-Discussion Summary (2013-11-20):

- Advanced application scenarios drive for more capacity!
- Sustainability with future High End Computing (HEC) resources leads to intelligent application components, e.g., for Agent Based Modelling (ABM), with Exa-operations, Exa-Flop/s, ...
- Future High Performance Computing (HPC), supercomputing, and parallel Multi-Agent Systems (MAS) should become more more outlasting than implementations from scratch for any architecture and system generation.
- Increasing need to provide advanced network support for creating demanding high end services.
- Software Defined Network (SDN) implementation is in development.
- Increased reliability and efficiency regarding operation and emerging technologies is required for Exascale.
- Integrating HEC, MAS, SDN, knowledge resources, and applications.
- Goal for future initiatives and projects is an integrated platform for supercomputing, High End Computing, and mobile computing.

~) Q (

▲御▶ ▲ 臣▶ ▲ 臣▶

- INFOCOMP Expert Panel: Table of Presentations

### INFOCOMP Expert Panel: Table of Presentations

### **Panelist Presentations:**

- High End Computing and Advanced Scientific Supercomputing: Sustainability, Challenges, and Prospects with Management and Research (*Rückemann*)
- Challenges on Parallelising Multi-agent Systems (Leitão)

(Inden)

(Georgi)

(Reddy)

(Abu Abed)

・ 同 ト ・ ヨ ト ・ ヨ ト

- Exa-Intelligence: On Managerial Challenges in Complex Industrial Landscapes of Risk Case: Production Ramp-ups in Aviation Industry
- Software Defined Networks: Only a hype or the next logical step?
- Software Defined Networks
- Exa-Intelligence: A scientific application software's perspective on fault tolerance

#### International Expert Panel INFOCOMP 2013

Exa-Intelligence: Next Generations of Intelligent Multi-Agent and High End Computing Systems in Development and Practice High End Computing and Advanced Scientific Supercomputing: Sustainability, Challenges, and Prospects with Management and Research

The International Conference on Advanced Communications and Computation (INFOCOMP 2013) November 18, 2013, Lisbon, Portugal



Dr. rer. nat. Claus-Peter Rückemann<sup>1,2,3</sup>



<sup>1</sup> Leibniz Universität Hannover, Hannover, Germany
 <sup>2</sup> Westfälische Wilhelms-Universität Münster (WWU), Münster, Germany
 <sup>3</sup> North-German Supercomputing Alliance (HLRN), Germany

ruckema(at)uni-muenster.de





International Expert Panel INFOCOMP 2013: Exa-Intelligence

Status: High End Computing and Advanced Scientific Supercomputing

### Status: High End Computing and Advanced Scientific Supercomputing

#### High End Computing ...

- High End Computing is increaslingy driven by physics (and applications).
- Latency.
- Big data (Volume, Velocity, Variabiltiy, Vitality).
- Long-term storage and archiving.
- Scheduling issues.
- Optimisation and efficiency.
- Interactive high end applications.
- Complementary needs and perception on research and business?
- Integrated collaboration frameworks and concepts for resources, services, and disciplines?
- Validation, verification, error correction?
- Redundancy and criticality management?
- Knowledge, what?, where?
- Classification (Universal Decimal Classification, UDC)?
- Content and context?
- Interactive communication requirements (quantity and quality).
- Data transfer to/from distributed resources (interactive and batch).
- Flexible networks?

International Expert Panel INFOCOMP 2013: Exa-Intelligence

Status: High End Computing and Advanced Scientific Supercomputing

### Status: High End Computing and Advanced Scientific Supercomputing

#### Advanced Scientific Supercomputing ....

- Complexity of computing scenarios is steadily increasing.
- Development of methods and applications depending on funding, physical resources, consulting, reliability, high availability, security.
- Is software a solution for every problem?
- Isolated user groups, no holistic view on context and content.
- Who will be the recipients of YOUR work/results?

Management and Research

#### Management and Research

### Sustainability ...

- Much shorter life-cycle and tender intervals required.
- Much less configuration re-inventing cycles required.
- Implementation of expertise driven management processes required.
- Overall (external) auditing required.

### Challenges and Prospects ...

• Measurement is necessary for improvements and discussion.

Challenges of disciplines-services-providers application scenarios

### Challenges of disciplines-services-providers application scenarios



Dr. rer. nat. Claus-Peter Rückemann

International Expert Panel INFOCOMP 2013: Exa-Intelligence

Universal Decimal Classification

### Universal Decimal Classification

| Example excerpt of Universal Decimal Classification (UDC) codes: |                                                                    |
|------------------------------------------------------------------|--------------------------------------------------------------------|
| UDC Code                                                         | Description (English)                                              |
| UDC 55                                                           | Earth Sciences. Geological sciences                                |
| UDC 56                                                           | Palaeontology                                                      |
| UDC 911.2                                                        | Physical geography                                                 |
| UDC 902                                                          | Archaeology                                                        |
| UDC 903                                                          | Prehistory. Prehistoric remains, artefacts, antiquities            |
| UDC 904                                                          | Cultural remains of historical times                               |
| UDC 25                                                           | Religions of antiquity. Minor cults and religions                  |
| UDC 930.85                                                       | History of civilization. Cultural history                          |
| UDC "63"                                                         | Archaeological, prehistoric, protohistoric periods and ages        |
| UDC (7)                                                          | North and Central America                                          |
| UDC (23)                                                         | Above sea level. Surface relief. Above ground generally. Mountains |
| UDC (24)                                                         | Below sea level. Underground. Subterranean                         |
| UDC =84/=88                                                      | Central and South American indigenous languages                    |

(ロ) (四) (三) (三)

æ

Information systems and computed classified objects

### Information systems and computed classified objects

#### Example: Region, Pyramid of Maya, Yucatán, México









Kukulkán

#### Nohoch Mul

El Meco

El Rey

- Function: SAMPLE objects from a group and / or location.
- **Content / context**: compute and storage: objects pyramids, Maya, Yucatán region.
- Computation: Selection of media photo objects.

International Expert Panel INFOCOMP 2013: Exa-Intelligence

Knowledge and computing

#### Knowledge and computing

### Environment and geosciences ...

- Short-term results favoured.
- Processing.
- Simulation and modelling.

### Archaeology and natural sciences ...

• Documentation and classification.

Vision – Way to go: Intelligent, autonomous components

### Vision – Way to go: Intelligent, autonomous components

#### Intelligent components

- Intelligent software components,
- Knowledge resources,
- Interfaces for least invasive operation,
- Integrated information and computing systems development.

#### Knowledge resources: (essential transfer over generations)

- Knowledge recognition (expertise) and decision making.
- Knowledge documentation, for any aspect of nature and society (sciences, technical descriptions, tools, cultural heritage, media, ...).
- Long-term means.

#### **Process targets**

- Holistic knowledge resources creation,
- Knowledge resources transfer over generations,
- Documentation of requirements and context,
- Integrated information and computing systems development.

< 🗇 🕨 < 🖻 🕨 <

### Conclusions

### Funding (and) multi-disciplinary work and knowledge

#### Selected challenges and deficits:

(as identified by last years' INFOCOMP Panel on High End Systems)

- Integrating hardware and software solutions!
- Scalability, fast and massive I/O and communication solutions!
- Automation and autonomous components!
- Intelligent components, learning systems!
- Education and teaching!

### Search for solutions: Intelligent and High End Computing systems:

- Multi-disciplinary work (content, context, knowledge).
- Sciences (expertise in different disciplines).
- Complexity and intelligence (holistic knowledge and components).
- No wearout operation with High End Computing and Supercomputing.
- Flexible, fast and massive I/O and communication solutions.
- Hardware and software (integration frameworks).
- Collaboration and funding.

・ 同 ト ・ ヨ ト ・ ヨ ト



The Third International Conference on Advanced Communications and Computation

INFOCOMP 2013 November 17 - 22, 2013 - Lisbon, Portugal

# Challenges on Parallelising Multiagent Systems



URL: http://www.ipb.pt e-mail: pleitao@ipb.pt

Lisbon, 18th November 2013 11/27/13

# Contextualization of MAS

- Distributed Artificial Intelligence field
- Society of distributed intelligent agents that interact each other to achieve their goals



- Suitable to solve large-scale complex problems:
  - Planning and scheduling in manufacturing or logistics
  - Collaborative management of electrical power systems
  - Autonomous traffic systems
  - Computational risk management
  - High level animation and an emergent field in high level simulation

11/27/13

٠

# Problem

Do we need to run MAS solutions in HPC/HEC platforms?

MAS are distributed systems, but what happen if we parallelise a distributed system?

Important note:

•

- Cluster based distributed memory computing is efficient if the processor cores spend most of the time computing rather than communicating
- This is however not easy with MAS due to their high levels of communication between agents 11/27/13

# Challenges

Strategies to divide the global problem into smaller ones?

- How to ensure the high level of messages exchanged between distributed agents?
- How to synchronize the parallelized distributed agents?
- How to access huge volume of data in real-time (i.e. without delays to feed the agents during simulation)
- Which strategies to dynamically allocate the needed cores to fulfill the simulation in the given time?
- How to positively influence the direction of simulation making it to converge faster controlling non desired situations on the way?

11/27/13

•

•

# **ABM** for Simulation

- · Agent-based modelling (ABM):
  - Computational platform to analyse, experiment and simulate systems populated by agents
  - Reproduction of complex phenomena, such as evolution and self-organisation
  - Examples: Netlogo, Mason and Repast

### • Differences to MAS frameworks:

- MAS frameworks allow building agent-based systems, but they haven't a simulation infrastructure (e.g., misses a scheduler and the notion of a "clock")
- ABM frameworks allow agent-based simulation but they have not the purpose of developing agent systems (nor FIPA compliant)

11/27/13

# **REPAST HPC**

Written in C++ and MPI for parallel operations through distributed memory computing

· Features for the parallelisation of the agent-based model

- Synchronisation scheduling of events
- Global data collection
- Automatic management of agent interactions across multiple processes
- Supporting cross-process communication and synchronisation of the simulation
  - distributed across multiple processes (each containing several agents)

# ABM HPC or parallelisation of MAS from scratch?

11/27/13

•

•

# **Other Questions**

- Are MAS based simulation technics valuable in a distributed global system, where normal endpoints (such as our laptops) are the cores of an HPC?
   [see for instance the SETI@home project]
- What will be the usage of mobile devices in the future cloud HPC computing?
  - Can this be considered as a future trend?
  - Will this enable the ubiquitous computing and enable a greater level of MAS based cloud computing?

# **Panel Session**

in Development and Practice Exa-Intelligence: Next Generations of Intelligent Multi-Agent **Systems** and High End Computing

### **Exa-Intelligence:**

### On Managerial Challenges in Complex Industrial Landscapes of Risk

Case:

**Production Ramp-ups** 

in Aviation Industry



# **Practice** of Intelligent Multi-Agent **Development and Exa-Intelligence: Next Generations Systems** End Computing Sessior and High Panel

# On **Computational** Challenges in Complex Industrial Landscapes of Risk **Some Theses**

- 1. Demand for computational power in real (and digital) economy is crucial to drive and keep step with change.
- Capacity is "going service"
  In far most of applications not "power" will be the problem but architectures making capacity available for solutions. (Sources e.g.: Panels Infocomp 2011 / 2012, FP/8 Horizon 2020)
- 3. The challenge is to adjust architectures of capacity demand and of capacity services to each other e.g. in terms of
  - Computation / communication in processing
  - Homogeneity / heterogeneity of the problem

### Heterogeneous

End-to-end operations' networks (large scale of different activity/objects)

### Homogeneous

Continental weather model (multiple identical cells) Making homogeneous Translating Operations networks into a landscape of operations' risk

# **Practice** Exa-Intelligence: Next Generations of Intelligent Multi-Agent in Development and **Systems** End Computing Session and High Panel



### Distributed Operations' and Operations' Management System Landscape of Coupled Risks in a Factory



Boeing 737 assembly line in the 1980s and 1990s, Renton, WA

Next Generations of Intelligent Multi-Agent

Sessior

Panel

Exa-Intelligence:

# in Development and Practice of Intelligent Multi-Agent **Next Generations Systems** Computing Sessior Exa-Intelligence: End anel and High

### Core Activity of Operations' Management R.E.A.L. $\rightarrow$ Realise – Evaluate – Act – Learn

### Realise unplanned event

monitor operations, anticipate, identify, categorize

### Evaluate impact of event and calculate relevance

estimate expectation value of propagation, compare with threshold of relevance

 $EV_{\alpha P} = \sum_{\alpha} r_{\alpha L} * I_{\alpha L}$  decision criterion:  $EV_P > T_R$ **P** = propagation, **EV**<sub>P</sub> = expectation value.  $\alpha$  = event, **r** = event risk, **I** = impact, **L** = location  $\mathbf{R}$  = relevance,  $\mathbf{T}_{\mathbf{R}}$  = threshold value of relevance

### Act on relevant events

identify / analyse / plan / schedule / implement options, control effectiveness

### Learn how to stabilise system behaviour

find, structure and tune relevant **control parameters** to achieve regular behaviour

# **Panel Session**

in Development and Practice Exa-Intelligence: Next Generations of Intelligent Multi-Agent **Systems** and High End Computing

### The Model Underlying R.E.A.L. Interdependent Multi-dimensional Lattice Trees

- Link = estimated event risk
- Node = "management cell" = area of responsibility
- Size = estimated impact (effect at aiming point)





Zentrum für Informationsdienste und Hochleistungsrechnen - TU Dresden

# Software Defined Networks Only a hype or the next logical step?

Exa-Intelligence: Next Generations of Intelligent Multi-Agent and High End Computing Systems in Development and Practice

Andy Georgi

18. November 2013

Nöthnitzer Straße 46 01187 Dresden

Telefon: +49 351 - 463 38783 E-Mail: Andy.Georgi@tu-dresden.de



### Infrastructure characteristics:

- Static configuration
- Best-effort service
- Over-provisioning
- Single domain management

Traffic characteristics:

- Highly individual requirements
- Unpredictable dynamic flows
- Low utilization (on av.)
- Traffic across multiple domains

### Divergence between infrastructure and traffic characteristics!





## Software Defined Networking





## Software Defined Networking

DRESDEN



High Performance Computing

# Future of Networking



High Performance Computing

# Thank you for your attention!




## **Software Defined Networks**

## Yenumula B Reddy Grambling State University

## Need of Software Defined networks Limitations of Current Network



Major components connected in the network

Internet - Internet cloud refers to the source of the Internet to an organization

Router - as a gateway between the LAN and the WAN networks

Unified Threat Management (UTM)/ Firewall for providing gateway level network security for the various end points used in the organization

.Core Switch – a layer 3 based network switch a Layer-3 based Network Switch that connects to the various distribution switches, edge switches using Optical Fiber Networks or UTP Copper cabling.

Network Area Storage (NAS) Device – to store bulk data

Wireless Controller - to provide wireless (Wi-Fi) access to the PC's/ Laptops etc

.IP Telephony Server - Servers provide centralized administration and connectivity to PSTN Lines to all the IP Phones/ VOIP devices

Distribution Switches - provide an aggregation layer for network switching.

Edge Switches - are basically Layer-2 switches that provide direct connectivity to the various network devices like PC's, laptops, Wireless Access Points etc using the Copper UTP cables.

Wireless Access Points - contain built-in radios which provide wireless signals for connecting certain network devices that has an in-built wireless adapter.

Network Endpoints/ Devices – includes various network devices/ endpoints connecting to the LAN via edge switches/ wireless access points.

http://www.excitingip.net/27/a-basic-enterprise-lan-network-architecture-block-diagram-and-components

## Limitations \_Contd

- Difficult to manage the current network traffic and increasing demands
- Can not change dynamically the configuration according to network conditions (Reason: many complex functions backed into infrastructure)
- No control plane abstraction for the whole network
- No network operating systems to have global view of network

## Need of Software Defined networks Software defined networks (SDN)

### **Definition:**

- Software-defined networking (SDN) is an approach to <u>networking</u> in which <u>control</u> is <u>decoupled</u> from hardware and given to a software application called a controller.
- The goal is to respond quickly to meet the business requirements
- Can maintain the traffic from centralized control without having to touch the switches.
- Can change the rules, prioritize the blocks to manage the traffic

### **Need of Software Defined networks** Overcoming the problems with SDN

- Separate control plane and Data plane entities
- Run control plane software on general purpose hardware
- Programmable data planes
- An architecture to control entire network

### **Need of Software Defined networks** Benefits of software defined network

- Lower operational expenses
- Flexibility service providers can develop their services by using standard tools
- Improved uptime by eliminating manual intervention
- Better management for service provides through virtual network
- Planning the resources through better visibility into network
- Infrastructure savings by separating control pane and data plane

### **Need of Software Defined networks** Promises of software defined network

- Emerging network architecture to unlock the innovation and upgrade the networking efficiencies
- It is the network that decoupling of the network control layer from the data transport layer.
- It is dynamic, adaptable, manageable and cost-effective
- Cloud computing is also driving the need for SDN
- Facilitate network automation, virtualization, and policy management

### Need of Software Defined networks Current status

- The IETF is investigating models of SDN for feasible technical approaches
- Simultaneous to SDNRG's study, other IETF (internet emerging task force) Working Groups have started their own efforts in SDN
- SDN, especially OpenFlow, has already been used in a carrier's production network to provide virtualized ne
- Until recently, the IP/MPLS network settings of tunnel LSPs to carry user's traffic were statically and manually configured at routers. As a result, it was technically difficult to deal with a scenario in which source-destination pairs of LSPs frequently changed. SDN's logically centralized approach has the capability to solve this kind of technical challenge.

# Challenges

- Will it change the nature of IT
- Does it requires resources around cloud?
- Do we need better support of cloud deployments
- Can it Control entire data from single location
- Will SDN help to spin up new applications
- Will it enhance the IT security
- What are the design challenges
- Does it Require more intelligence in decisions

#### **Future of Software Defined Networks**

- SDN is still in its infancy
- Evolutionary approach to network architecture programming network devices to modify their behavior
- Amazon and Google are already starting to use SDN
- Future development of new applications and services that make the most of SDN
- The development of new applications and services that make the most of SDN
- Impact on hardware manufacturers and Business
- High security level at networking user control





# Exa-Intelligence: A scientific application software's perspective on fault tolerance.

Wassim Abu Abed, PANEL INFOCOMP 2013, Nov. 18. 2013, Lisbon

### Status: Fault-tolerance (FT) on peta-scale

Almost all FT Techniques are based on a global checkpoint-restart recovery model

## Indiscrimination between different types of faults

- Permanent node crash
- Detected transient errors
- Network errors
- File system failures

#### Some exceptions exist, but:

- Sporadic attempts in some components
- Higher level of software stack does not cope with faults (Runtime system)
- No fault detection and management across the software stack
  - Due to lack of communication and coordination between
    - software layers and components
    - Application and supporting libraries



November 1, 2013 | W. Abu Abed | PANEL INFOCOMP 2013: Exa-Intelligence | Seite 1



#### Status: Fault-tolerance on exa-scale

#### Checkpoint-restart recovery model on exascale systems <u>WILL NOT BE ENOUGH !</u>

#### Why:

- Increased failures.
- Time for CP/R will exceed the mean time to failure of system.
- Possibly no application will run to the end.
- Increased runtime/power costs due to CP/R. (CP/R is expensive)
- Hardware level reliability improvement is expensive.







### **References:**

- M. A. Heroux, Toward Resilient Algorithms and Applications, Invited Talk on FTXS 2013, New York City, June 18<sup>th</sup> 2013.
- F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir. Toward exascale resilience. The International Journal of High Performance Computing Applications, 23(4): 374–388, 2009.
- E. Dubrova. Fault-Tolerant Design. Springer, 2013.
- J. Daly (eds.), Inter-Agency Workshop on HPC Reilience at Extreme Scale, National Security Agency Advanced Computing Systems, Februrary 2012.
- W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca and J. Dongarra, An Evaluation of User-Level Failure Mitigation Support in MPI, Proceedings of Recent Advances in Message Passing Interface 19th European MPI Users Group Meeting, EuroMPI 2012. Springer, Vienna, Austria, Sep. 2012, pp. 193–203.
- W. Bland, P. Du, A. Bouteiller, T. Herault, G. Bosilca and J. Dongarra, A Checkpoint-on-Failure Protocol for Algorithm-Based Recovery in Standard MPI, Kaklamanis et al. (eds.) Euro-Par 2012, LNCS, vol. 7484, Springer-Verlag, Berlin Heidelberg, 2012, pp. 477–488.
- Z. Chen and J. Dongarra, Algorithm-Based Fault Tolerance for Fail-Stop Failures, IEEE Transactions on Parallel And Distributed Systems, Vol. 19, No. 12, 2008, pp. 1628–1641.



November 1, 2013 | W. Abu Abed | PANEL INFOCOMP 2013: Exa-Intelligence | Seite 4

