

Technology platforms and building blocks – a key element for shorter time-to-market of innovative micro sensors

Dipl.Ing. Arndt Steinke

Venice, Italy, 23rd - 28th, 2015

Sensordevices 2015

Content

1 CiS at a glance

mission – experiences - motivation

- 2 The expections of SMEs for smart sensor systems crossing the "valley of death"
- 3 Open platform a common denominator

signal system – building blocks – technology platform

4 MORES[™] - technology platform

product driven platform – examples of products

5 Summary

MORES[™] - Microoptical Remission Sensor

2

Sensor components for *integrated optical encoder sensor

*integrated dew point sensor

***radiation detector**

*reflective pulse oximeter

*pressure sensor

*roughness sensor

*optical hybrid encoder sensor

*optoelectronical pO₂-sensor

*optoelectronical NH₃- sensor

SWIZERLAND

*particle sensor

Most important demands of our customer SMEs and larger enterprises

>High performance parameters
>Low volume/low cost
>Innovation in system components
>Fast market entrance

3

Arndt Steinke www.cismst.de

AUSTRIA

1

CiS at a glance

- Founded in 1993
- Turnover 2013
 - Public sector and strategic programs
 - Industrial contracts R&D and prototyping
- Employees 2013
- Quality system approved to ISO9001:2008

Arndt Steinke

www.cismst.de

- Clean room:
 - 100 m² cleanroom-class 10
 - 500 m² cleanroom-class 100
 - 1000 m² cleanroom-class 10,000
 - 1000 m² climated laboratory

12,8 Mio€

Certificate of Registration QUALITY MANAGEMENT SYSTEM or and on behalt of B In Rank Expiry date: 31.01.201 Page 1 of 1

4

54 %

46 %

Mission as a non-profit research institut in the field of microsensor systems

European "three pillars bridge" to pass the "Valley of death"

EU industrial policy strategy - The role of Key Enabling Technologies (KETs) and ICT, ICT Committee 25, September 2013 Gavino,Murgia, DG Enterprise & Industry– European Commission

5

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015

Simulation and Design

Waferprocessing

Assembly

Arndt Steinke www.cismst.de

Certified QM System DIN EN ISO 9001

6

Simulation and Design

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015

Business Unit amos: MORES® Technology platform

Particle Sensors

- Measurement of particle concentration in fluidics
- Customer specific solutions
- Simulation and design

Levelling Sensors

- Levelling for balances
- +/- 10° accuracy for levelling
- Customer specific solution

- Monitoring of cardiovascular parameters
- Customer specific solutions
- Simulation and design

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015

Fluorescence Sensors

- Biological and chemical sensors
- Measurement in micro fluidic systems
- Customer specific solution

12

Business Unit MEMS: piezoresistive & impedimetric platform

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015

Business Unit: Silicon Detectors

Silicon-Photodiodes

- planar photodiodes and photodiode arrays: custom specific geometry / layout and housing
- Silicon-Photomultiplier
- Avalanche Photodiodes, Geiger-Mode-APD
- On-chip Filter

Additional Services

- Multi-Project-Wafer Services
- Device and defect analysis
- Under-Bump-Metallization, coating & plating, Through-Silicon Vias

Radiation and Particle Detection

- large area Micro-strip detector chips
- Pixel detector chips
- Thin detectors
- detection of high energy and cosmic radiation
- detection of low light flux and scintillator pulses
- detection of alpha, beta and gamma radiation
- X-ray detection
- instrumentation for high-energy and space astrophysics,
- nuclear medicine, nuclear safety, security, environment, material science

13

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015

Research and development of technologies and radiation detectors for High-energy physic experiments

CiS Research Institut produce high-end radiation silicon detectors for installation in experiments at the CERN Large Hadron Collider, esp. ATLAS and MS experiments.

ATLAS PIXEL IBL

CiS has been awarded with the "Industrial Supplier Award" as a series supplier of highly sensitive radiation detectors for the particle accelerator at CERN

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015

Summ up from the fact of

- Wide field of different sensor transducers
- Realization on the same waferprocessing line
- Expensive microelectronic processing

To find

- A multiplicator
- A common denominiator

16

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015

Content

1 CiS at a glance

mission – experiences - motivation

2 The expections of SMEs for smart sensor systems

crossing the "valley of death"

3 Open platform – a common denominator

signal system – building blocks – technology platform

4 MORES[™] - technology platform

product driven platform – examples of products

5 Summary

MORES[™] - Microoptical Remission Sensor

What are our SMEs looking for?

Sensordevice 2015, $23^{rd} - 28^{th}$, 2015 Venice, Italy 2015

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015

To bring all these needs/innovation under one roof

Integration of knowledge from different disciplines necessary

Content

1 CiS at a glance

mission – experiences - motivation

2 The expections of SMEs for smart sensor systems crossing the "valley of death"

3 Open platform – a common denominator

signal system- building blocks - technology platform

4 MORES[™] - technology platform

product driven platform – examples of products

5 Summary

MORES[™] - Microoptical Remission Sensor

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015

3 Open platform – signal system

Sensor signal components of micro sensor system

3 Open platform – signal system

24

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015

26

Sensordevice 2015, $23^{rd} - 28^{th}$, 2015 Venice, Italy 2015

Technology:

Etch mask: LP Si3N4 anisotropic etching of silicon standard grooves several etchtants available (e.g. TMAH, KOH) mask aligning in several directions using <100> wafer

Advantage:

Zero defect in active area several angles between wafer surface and etched slope 54,73°, 45°, 90° possible

Application:

interposer micro tip

Etch stop

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015

Building block: Silicon Fusion Bonding

SFB bonded pressure sensor

Silicon – Silicon Bonding

- Temperatures 120 400°C
 - back-end process possible
- High fracture toughness
 - high strength packages even for sensitive materials
- No mismatch in Young's modulus
 no influence of static pressure
- No mismatch in TCE
 - low thermal hysteresis
 - low signal drift
 - low temperature coefficient

Source: E.Hiller, R.Täschner; Activation methods for low temperature silicon fusion bonding, Mikrosystemtechnik Kongress 2011, 10.-12.10.2011, Darmstadt

29

Building block: 3D lithography and etching

Positive-tone photoresist

ca. 10 µm @ 250 µm deth

Negative-tone photoresist

Sensordevice 2015, 23rd - 28th, 2015 Venice, Italy 2015

31

Building block: Lowered bond pads (or active elements)

In combination with module "MESA"

Advantage:

Higher functionality of sensor surface (without disturbances) Surface without any bond pads Planarity of chip and assembly substrate Protection of contacts and wires

Building block: Chip(s) - in - (active) chip(s)

flip chip and stacking compatible (planar surface) high positioning accuracy of chips into the cavity (< 20 μ m) high reproducibility and signal stability high functionality by modular combination of several elements of the kit such as filters, membranes, lenses, apertures, LEDs, lasers, fibres

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015

Building block: Chip-to-wire connection

Advantage: Self positioning Application specific design Array of grooves, transducer Close to transducer, short distance (optoelectronic, impedimetric, piezoresistive)

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015

Building block: Through Silicon Vias

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015

Building block: illumination component

technical features

- beam diameter below 300 μm
 @ 0 to 30 mm
- polarization ratio 1:10⁵
- size: 0.6 x 0.7 x 1.4 mm³

Manufacturing

Innovative technologies

- Polymer On Glass (POG)
- Bonding with reactive multilayers (RML)
- metal to optics adjustment

Steinke,Het al, 3D Miniaturization of optical polarimetric principle used for subcutaneous glucose monitoring, EPoSS Annual Forum 2014

Miniaturized optical film thickness monitor

Arndt Steinke www.cismst.de

35

Building block: Receiver component

KETs: Time to Act High- Level Expert Group on Key Enable Technologie Finale Report 2015

Content

1 CiS at a glance

mission – experiences - motivation

- 2 The expections of SMEs for smart sensor systems crossing the "valley of death"
- 3 Open platform a common denominator

process – building blocks – technology platform

4 MORES[™] - technology platform

product driven platform – examples of products

5 Summary

MORES[™] - Microoptical Remission Sensor

39

Venice, Italy 2015

Interference Principle

41

4 MORES[™] - technology platform

Particle sensors

• Measurement of particle concentration in fluidics

Levelling sensors

- Levelling for balances
- +/- 10° accuracy for levelling

PD LED Memorian Partealoft Space Baace Baace Cehäuse Konstakterung

Oxygen sensors

- Fluorescence based sensors
- Measurement in micro fluidic systems

Life science sensors

 Monitoring of cardiovascular parameters

Linear encoder

- High interpolation
- Compensation of misalignment

Source: <u>A.Steinke</u>, A.Albrecht, O.Brodersen, Th.Ortlepp; MORES[™] - an example of a product driven technology platform – a key for SMEs featuring microsystem innovation, EPoSS Annual Forum 2013, Cork, Ireland, 26th September 2013

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015

Sensordevice 2015, 23rd – 28th, 201 Venice, Italy 2015

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015

4 MORES[™] - technology platform

Implement market ready solutions in small lots Demonstrate cooperation between project partners

SMARTER - SI Smart Access to Manufacturing for

Systems Integration

Modular system for multi-parametric optical detection using an automatised biological protocol. First validation by detection of several microtoxins

Carbon Dioxide measurement system CIS, CSEM and two SME's

A sensitive polymer-layer is combined with a micro-optical module to reduce cross sensitivity. Benefits: Maintenance free, low power consumption, high accuracy, wide operation range

© SMARTER-SI 2015

"Smart Anything Everywhere" Launch Event, Grenoble, 27.03.2015

7

46

Content

1 CiS at a glance

mission – experiences - motivation

- 2 The expections of SMEs for smart sensor systems crossing the "valley of death"
- 3 Open platform a common denominator

process – building blocks – technology platform

4 MORES[™] - technology platform

product driven platform – examples of products

5 Summary

MORES[™] - Microoptical Remission Sensor

Building block + platform strategy

>High performance parameters
>Low volume/low cost
>Innovation in system components
>Fast market entrance

- 1. SMEs play a key role in the European landscape of innovation and employment
- 2. It is absolutely necessary to reduce the entrance barriers (technological, commercial,..) for SMEs regarding access to smart system technology (e.g. high performance)
- 3. We have to accept the boundary conditions of SMEs (e.g. low volume, system components only, fast market entrance)

An open platform and has a high leverage for SMEs`strength

Let`s talk about it!

Thank you very much for your attention

50

CiS Forschungsinstitut für Mikrosensorik GmbH

Konrad-Zuse-Straße 14 99099 Erfurt Germany info@cismst.de www.cismst.de

Dipl.-Ing. Arndt Steinke Director Strategic Marketing phone: +49 361 663-1420 asteinke@cismst.de

Sensordevice 2015, 23rd – 28th, 2015 Venice, Italy 2015