
Developing Software for Mobile Devices:
How to Do That Best

(c) Hermann Kaindl 1

Institut für
Computertechnik

ICT

Institute of
Computer Technology

Developing Software
for Mobile Devices:

How to Do That Best

Moderator:
Hermann Kaindl

TU Wien
Institute of Computer Technology

Institute of Computer Technology

Panelists

 Roberto Meli DPO Srl, Italy
 Rodion Podorozhny Texas State University, USA
 Andreas Kurtz BMW AG / University of

Augsburg, Germany
 Andreas Ibing TU München, Germany
 Petre Dini Concordia University, Canada /

China Space Agency Center,
China

Developing Software for Mobile Devices:
How to Do That Best

(c) Hermann Kaindl 2

Institute of Computer Technology

Mobile devices vs. traditional computers:
 Different and possibly adaptive mobile user

interfaces (UIs)
 Context-aware/context-sensitive mobile applications
 Ubiquitous interactions, e.g., with wearables

Challenges beyond that of traditional software
development

Introduction

Institute of Computer Technology

Tailored UIs for Smartphones and
Tablet Computers

 Relative screen sizes
 Automated generation of Graphical User Interfaces

(GUIs)
 Automated tailoring through optimization

techniques:
- A demo flight booking GUI
http://ucp.ict.tuwien.ac.at/UI/FlightBooking
- An accommodation booking GUI
http://ucp.ict.tuwien.ac.at/UI/accomodationBooking

 Trade-off between size and mobility

Developing Software for Mobile Devices:
How to Do That Best

(c) Hermann Kaindl 3

Institute of Computer Technology

Thank you for your attention!

APP DEVELOPMENT
& MEASUREMENT:

ALLIES OR ENEMIES?
Dr. Roberto Meli

Context - 1

Mobile application development and
maintenance are often characterized by:

 small project, sizes and short schedules,

 a volatile scope,

 the use of diverse technologies,

 user interface and user experience relevance

 multimedia integration

 geographical information integration

 social remote and local interaction

Context - 2

These elements require an organizational
approach based on:

 time responsiveness

 agile or evolutionary processes

 small and very integrated teams

 strong user (representative) involvement

 interdisciplinary skills

 supportive architectures and tools

None of these elements are “against”
measurement !

Measurement: useful or not ?

 Corporate context

 Project oriented
development

 Prioritized and variable
resource allocation

 Internal User driven

 Project productivity
assessment needs

 Cost control emphasis

 Tender / Contract
Management

 Personal/Team context

 Service oriented
development

 Fixed resource
allocation

 Market User driven

 Business Unit
productivity assessment
needs

 Time to market emphasis

 Informal internal
contracts

Production teams sometime feel
like that…

Estimations ?

When we consider App development
effort, duration and staff
estimation, apparently, there is no
spread adoption of formal methods.
Expert judgment seems to be the
most adopted strategy.
Unfortunately, the quality of these
estimates is dependent on the
quality of the estimators and many
times it is impossible to compare
different situations and to share
expertise among different teams.

Measurement’s role

 To help knowing (explicit not implicit)

 To help estimating resources

 To help communicating

 To help demonstrating added value

 To help benchmarking

Business
values

• To realize useful systems!
• To do it efficiently !

Which Measurement and Models ?

 Any adopted measurement model should be:

 light

 quick

 simple

 used by developers

 complete

 standard

 product oriented

 easy to learn

Integrated

Software

Cost

Model

1

2016
Lisbon

PANEL
SOFTENG

Designing Software for Mobile Devices:
How to Do That Best

Petre Dini, Concordia University, Canada | China Space Agency Center, China

WWW.IARIA.ORG

2222016
Lisbon

From Requirements to Software

• Centralized systems | hardware vs. software

• Distributed systems | hardware vs. software

• Real-time systems | embedded software

• Mobile systems | systems on the chip

• Wearable systems | systems on the chip

• Implantable systems | systems on the chip

• Body systems | cyberman

3332016
Lisbon

Technology/Maturity Lifecycle

IoT

maturity

ide
a

convincing market
enthusiasm

reality
valley

getting commercial

smart phones

cloud ~10 years

IN ATM

IPv6 ~20 years

Mobile
Wearable
Implanted

5G

fog
computing

time

mobile

Requirements Systems Testing and Validation
Mobile/Wearable/Implantable Human Behavior/ Body Features

4442016
Lisbon

Specifics

• Standardization and methodologies

Screen

API

• The finance sector is helping, e.g., the introduction of

Apple Pay along with the Apple Watch are current solutions;

Even more, payment-capable bracelets are offered by CaixaBank and
Barclays.

• Special considerations

Thermal considerations

Material and environment

Testing

5552016
Lisbon

Thermal considerations

• A specific aspect is that wearable devices introduce someunique thermal
design challenges that should be consideredfor devices, Apps and the
entire system. This is not only referring to operability, but also to a required
comfort level for humans. This design challenge is mainly for processor
intensive applications and units with complex displays.

6662016
Lisbon

Testing

Battery Life

• Energy and battery-based operation raises special maintenance issues and a
real challenge for both mobile (and wearable, …)

App developers and testers

• These need also suitable testing criteria tuned to the new features of devices
and Apps.

Testing for-Real

• As wearable devices are quite specific, simply substituting them with
emulators is not suitable; as the disciple is evolving in a rapid pace, trusting
the results of such emulator is doubtful. Still, there are a few wearable on the
market, e.g., Tizen, Android, etc.

Materials-oriented Testing

• Due to metal migration concerns, biased testing is increasingly important to
validate sensitivity in moist environments and to validate the risk of tin
whiskers [8].

Testing body-wearable systems

• There is a large variety of wearable devices and Apps, from fitness bands
(which are essentially data collectors) to portable heads-up display;
additionally, complex interactions occur between the touch display, cameras,
and fast data communication with mobile platforms

7772016
Lisbon

Cyberman

8882016
Lisbon

Challenges

• Different mobile devices need different user interfaces.
With regard to screen size, automated GUI generation
with automated tailoring may become an option.

• What is specific on designing and testing wearable
devices and Apps is that user experience is more
relevant than in traditional approaches.

• “It is a challenge to develop and test very specific
features; e.g., “smart watches have very small screens
and almost no buttons, making the use of space,
navigation and user interaction incredibly important””

9992016
Lisbon

WWW.IARIA.ORG

Thanks

Thanks

SOFTENG panel

Testing and Runtime Validation

Andreas Ibing
TU München

Chair for IT Security

International Conference on Advances & Trends in Software Engineering
 24.02.2016

2

Software Bugs: Common Software Weaknesses

● Common Vulnerabilities and Exposures (CVE)
– over 75000 entries (US National Vulnerability Database)

● Common Weakness Enumeration (CWE)
– bug type classification, CVE entries mapped to CWE entries
– 33 views, 244 categories, 719 weaknesses, 1004 entries
– example: 'out-of-bounds write' (CWE-787)

● Common Weakness Scoring System (CWSS)
– risk metric to prioritize software weaknesses
– 16 factors in formula

● e.g. 'acquired privilege' or 'likelihood of exploit'
● current program analysis tools adhere in their reports to this taxonomy

3

Software Testing, Coverage and Instrumentation

● Test suite: specify input / output vectors
– detect bugs with unexpected output (including OS output)
– limited execution coverage

● control flow (branch coverage; modified condition / decision coverage)
● data flow coverage; input coverage; thread interleaving coverage

● Improve bug detection with instrumentation (add code for dynamic checks)

– source instrumentation (e.g. CCured)
– binary instrumentation

● dynamic (Pin, Valgrind)
– examples: Memcheck, Helgrind

● static / compiler instrumentation
– examples: AddressSanitizer, ThreadSanitizer

4

Symbolic Methods
● increase input coverage to arbitrary input

– symbolic variables and logic backend for path-sensitive bug detection (SMT
solver)

– independent of test suite execution coverage
● automated test case generation
● symbolic execution

– automatically explore satisfiable program paths
– allow false negative detections

● program path prioritization / pruning
– concretization (partially symbolic)
– examples: SAGE, KLEE

● abstract interpretation
– automated generalization; overapproximation of bug-free program paths
– allow false positive detections
– examples: Polyspace, Astree

5

Runtime Validation
● if check algorithm has 'negligible' overhead, can be continuously applied

at runtime
● checks at different levels

– instrumentation for runtime checks; examples:
● stack canaries
● object size checking

– checks in managed runtime; examples:
● Java
● 'Goldilocks', Java virtual machine with race detection

– CPU acceleration (extra hardware); examples:
● Intel Memory Protection Extensions (MPX)
● control flow signature checks in smartcard CPUs
● 'RADISH' CPU proposal for race detection

6

Arguable Trends ?

● Trend I: symbolic methods gaining importance for testing

● Trend II: from instrumentation for testing to CPU integration
for runtime checks
– Moore's law still working
– Server/PC innovations diffuse to embedded world

● (like virtualization, trusted computing...)

7

References
● R. Martin, S. Barnum, and S. Christey: "Being explicit about security weaknesses", CrossTalk The Journal of Defense Software Engineering,

20:4–8, 3 2007.

● G. Necula, J. Condit, M. Harpen, S. McPeak, and W. Weimer: "CCured: Type-Safe Retrofitting of Legacy Software", ACM Trans.
Programming Languages and Systems, 27(3):477–526, 2005.

● C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. Reddi, and K. Hazelwood. "Pin: Building customized program
analysis tools with dynamic instrumentation", Conf. Programming Language Design and Implementation, PLDI 2005, pages 190–200

● N. Nethercote and J. Seward. Valgrind: "A framework for heavyweight dynamic binary instrumentation", Int. Conf. Programming Language
Design and Implementation, 2007.

● J. Seward and N. Nethercote: "Using Valgrind to detect undefined value errors with bit-precision", USENIX Annual Technical Conference,
2005.

● A. Muehlenfeld and F. Wotawa: "Fault detection in multi-threaded C++ server applications", Int. Workshop Multithreading in Hardware and
Software, 2006

● K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov: "AddressSanitizer: A fast address sanity checker", USENIX Annual Technical
Conference, pages 28–28, 2012

● K. Serebryany and T. Iskhodzhanov: "ThreadSanitizer: data race detection in practice", Workshop on Binary Instrumentation and
Applications, pages 62–71, 2009.

● P. Godefroid, M. Levin, and D. Molnar: "Automated whitebox fuzz testing", Network and Distributed System Security Symp. (NDSS), pages
151–166, 2008.

● C. Cadar, D. Dunbar, and Dawson Engler: "KLEE: Unassisted and automatic generation of high-coverage tests for complex systems
programs", USENIX Symp. Operating Systems Design and Implementation (OSDI), pages 209–224, 2008.

● D. Kästner, S. Wilhelm, S. Nenova, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, X. Rival: "Astrée: Proving the Absence of
Runtime Errors. Embedded Real Time Software and Systems Congress", ERTS 2010.

● T. Elmas, S. Qadeer, and S. Tasiran: "Goldilocks: a race-aware Jave runtime", Communications of the ACM, 53(11):85–92, 2010

● R. Ramakesavan, D. Zimmerman, P. Singaravelu, G. Kuan, B. Vajda, S. Gibbons, and G. Beeraka: "Intel Memory Protection Extensions
Enabling Guide, Rev. 0.89", Intel Corporation

● J. Devietti, B. Wood, K. Strauss, L. Ceze, D. Grossman, S. Qadeer: "RADISH: Always-on sound and complete race detection in software and
hardware", Int. Symp. Computer Architecture 2012

