Agent Technology and IoT

Leo van Moergestel HU Utrecht University of Applied Sciences Utrecht, the Netherlands

Let me introduce myself

- Master degree in physics Utrecht University
- PhD in computer science
- Associate professor at the HU Utrecht University of Applied Sciences

Some of my books

Address Manager

1,114 no Hargert

Overview

- Part 1: Overview agent technology
- Part 2: Internet of things
- Part 3: Agent-based IoT

Overview Part 1

- Agents types
- Cooperation
- Negotiating
- Languages, pitfalls, standards etc.

What is an agent? (1)

• Definition by Wooldridge and Jennings:

"An agent is a computer system that is situated in some environment and that is capable of autonomous action in this environment in order to meet its design objectives"

What is an agent? (2)

- Autonomous
- Goal(s)
- Role(s)
- Plans
- Environment
- (Representative)
- Act (agere (Lat.), react)

agent

Processes and objects

- Object are passive
- An object will accomplish a method if it is called by another object. An agent checks to see if the request fits its goals
- Processes (general term for programs in execution phase)
- Process is not necessary autonomous or interacting with the environment

Applications

- Web bots
- Robotics
- Computer played character in games
- Malware
- Auctions
- Swarm intelligence
- Simulations of behaviour in groups

Agent types

- Reactive agents (reflex agents)
- Reactive agents with state
- Goal based agents
- Utility based agents

BDI-agent

- Belief Desire Intentions: The beliefs, goals, desires and intentions could be viewed as the mental states of a BDI-agent. (based on Michael Bratman's theory of human practical reasoning)
- From the inputs of its sensors the agent builds a set of <u>beliefs</u>. Beliefs characterize what an agent imagines its environment state to be;
- *Desires* describe agents preferences;
- <u>Intentions</u> characterize the goals or desires the agent has selected to work on.

Computing perspective

- Computational power
- Interconnection
- Distributed (in case of Multiagent Systems)
- Intelligence
- Delegation of control
- Human-orientation

Software engineering perspective

- Procedural methodology
- Object-oriented methodology
- Agent-oriented methodology

 Multiagent system (MAS) is a new software engineering paradigm

Artificial intelligence perspective

MAS and AI are NOT the same

Understand and model social intelligence and emergent behavior

- Al
 - Planning, Learning, Vision, Language understanding
- MAS
 - Interaction, Communication, Obligation, Norms, Responsibilities, Co-ordination, Co-operation

Characteristics of MAS

- MAS consists of a number of interacting autonomous agents
- MAS are designed to achieve some global goal
- MAS are specified in terms of high-level abstract concepts such as role, permission, responsibily and interaction
- MAS can be used to implement distributed systems

Some concepts used by agents

- Utility
- Reasoning
- Environment
- Communication
- Learning
 - Supervised learning, training
 - Re-inforcement learning

Multi-agent systems (1)

- A multi-agent system (MAS) consists of two or more interacting autonomous agents.
- Such a system is designed to achieve some global goal.
- The agents in a multi-agent system should cooperate, coordinate and negotiate to achieve their objectives.

Multi-agent systems (2)

Multi-agent Systems(3)

- <u>Role</u>: what is the role of a certain agent in a multi-agent system. Perhaps an agent has more than one role;
- <u>Permissions</u>: what are the constraints the agent is tied to;
- <u>Responsibility</u>: i.e. the responsibility an agent has in achieving the global goal;
- Interaction: agents interact with each other and the environment

Cooperation

- Pay-off matrix
- Nash equilibrium
- Pareto efficiency / optimum
- Maximizing social welfare
- Prisoners dilemma

Game Theory

- Two persons zero sum game
 - Chess (1-0, 1/2-1/2, 0-1)
 - Minimax theorema (von Neumann, Morgenstern)
- Other types of games
 - John Forbes Nash

Pay-off Matrix

- Consider two agents i and j
- Agent i can choose to do either A or B and agent j can chose between C or D
- Build a matrix where all combinations or outcomes with their utilities for both agents are available

• In many situations agents can choose to defect or to cooperate (prisoners dilemma)

Pay-off Matrix(2)

	i A	i B
j C	U _i (A,C) U _j (A,C)	U _i (B,C) U _j (B,C)
j D	U _i (A,D) U _j (A,D)	U _i (B,D) U _j (B,D)

Head-tail game

	i head		i	tail
j head	-1	1	1	-1
j tail	1	-1	-1	1

two coins if same i wins else j wins

Rock paper scissor

	i rock		i paper		i scissor	
j rock	0	0	-1	1	1	-1
j paper	1	-1	0	0	-1	1
j scissor	-1	1	1	-1	0	0

Nash equilibrium

- A nash equilibrium is a place in the pay-off matrix where in the same row there is no higher utility for agent i and in the same column no higher utility for agent j (but there are more situations for a nash equilibrium).
- Find the equilibrium by placing circles around the maxima. If there is a place in the matrix with circles around both utilities then this is the nash equilibrium.

Nash equilibrium (2)

	i action A		i action B	
j action A	6	8	2	5
j action B	2	0	1	1

Nash equilibrium (3)

Video Intermezzo

- TED presentation Nash Equilibrium https://www.youtube.com/watch?v=jlLgxeNBK_ 8
- Part from "a beautiful mind"

https://www.youtube.com/watch?v=2d_dtTZQy UM&spfreload=10

Prisonners Dilemma

- Two prisonners, separately kept in jail.
- If both deny: small penalty (6 months).
- If both confess: penalty 5 years in prison for both prisoners.
- If i confesses but j denies: i is free because of cooperation, but j severely punished (10 years).
- If j confesses but i denies: j is free because of cooperation, but i severely punished (10 years).
- What would you do?

Prisonners Dilemma (2)

	i deny		i co	onfess
j deny	3	3	0	5
j confess	5	0	1	1

Prisonners Dilemma (3)

Prisonners Dilemma (4)

Negotiation

- Auctions
 - English auction
 - Dutch auction
 - First-price sealed-bid auction
 - Vickrey auction
 - Chinese auction
- Types
 - Sealed bid / Open cry
 - One round / multiple round (one shot / ascending, descending)

Negotiation (2)

- Common value ("real value")
- Private value
- Correlated value

- Winner determination
 - First price auction
 - Second price auction

Negotiation (3)

- English auction
- First price, open cry, ascending auction
 - Start with reservation price (may be 0)
 - Bids are invited from agents
 - Bid should be more than the current highest bid
 - When no agents is willing to raise a bid, the good is allocated tot the agent with the current highest bid. This agents pays the price of the highest bid
- Winners curse and bogus bidders (shills)

Negotiation (4)

- Dutch auction
- First price, open cry, descending auction
 - Start with artificially high price
 - Auctioneer continually lowers the price until some agent makes a bid
 - Bid is the current price
 - The good is allocated tot the agent with the current bid. This agents pays the price of the current bid
- Winners curse

Negotiation (5)

- First-price sealed-bid auctions
- One shot auction, one round, alle agents interested in the good submit a bid to the auctioneer
- Good is allocated to the highest bidder
- Difference between the highest price and the second highest price is in effect wasted money for the winner

Negotiation (6)

- Vickrey auction
- Second price sealed bid
- Good is allocated to the highest bidder
- Highest bidder pays the price of the second highest bid
- Bidders dominant strategy is to bid the true value (i.e. private value)

Negotiation (7)

- Chinese auction
- Auctioneer sells tickets for a lottery
- Amount of tickets is fixed as well as the price
- When all tickets are sold, a ticket number is drawn
- Good is alocated to the buyer of the winning ticket
- Stategy is to buy many tickets if the good has a high private value

Babylonian Wife Auction

- Description originates from Herodotus (Greek historian 484-425 B.C.)
- Annually held marriage auctions
- English auction type, however

Agent programming languages

- No current standard
- Single or multiagent environment
- Mostly Java based
 - Platform independence
 - Installed base
- Software design tools and methods (AOP, Gaia, Prometheus)

Agent Programming Languages

- Jade
 - MAS
 - Multiplatform
- 2APL (BDI, Jade based)
- Jadex (BDI extensions to Jade)
- Jason (BDI language derived form AgentSpeak)

Pitfalls of agent technology

- \cdot Overselling, religious attitude towards agents
- · Don't know what, why ...
- · Confuse prototypes with real systems
- \cdot It is distributed software development
- You spend all your time implementing infrastructure
- · You ignore de facto standards

Data sharing

- Peer to peer communication
- Blackboard (mutual exclusion during updates)
- Subscribe/Notify Pattern

Data coupling diagram

Data coupling diagram

Data coupling diagram

FIPA

- Foundation of Intelligent Physical Agents
- Structure of messages in Agent Communication Language
 - Performative (see next slide)
 - Meta information (sender, receiver, language..)
 - Actual content

FIPA

(inform

:sender

:receiver

:content

:language

:ontology

agent5 (price good200 150) sl

hpl-auction

agent1

FIPA performative

performative	passing	requesting	negotiation	performing	error
	info	info		actions	handling
accept-proposal			х		
agree				x	
cancel		х		x	
cfp			х		
confirm	х				
disconfirm	х				
failure					Х
inform	х				
inform-if	х				
inform-ref	х				
not-understood					Х
propose			х		
query-if		х			
query-ref		х			
refuse				x	
reject-proposal			х		
request				x	
request-when				x	
request-whenever				x	
subscribe		x			

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

Contract Net Protocol

Overview Part 2

- IoT classification
- Organisation and administration
- Type of connection
- Computing capabilities

Organisation and administration

- Static: configuration before use
- Central administration on a single administration system (sort of yellow pages)
- Central administration with a set of administration systems (local yellow pages)
- Autonomous decentralised systems

Type of connection

- Device is a node in a special type of network (wired or wireless). A gateway can be used to connect the special network to the Internet.
- Device is directly connected to the Internet, but has limited possibilities. It can only send data on request.
- Device is directly connected to the internet and can play an active role.

Computing capabilities

- The device is running a single program (a single thread, eventloop or state machine).
 Local storage is limited.
- The device is running an operating system. Complex software solutions are possible if the hardware can support it.

Overview Part 3

- Design phase
- Manufacturing phase
- Distribution phase
- Usage phase including maintenance and repair
- Recycling phase

General concept

- A life cycle agent is added to a product.
- The agent is the linking pin to the Internet
- In combination with the agent, the device will become a part of the IoST (Internet of Smart Things)
- In the cloud a copy of the agent is available
- Information can be generated and used in different phases

Design and manufacturing

- The life cycle agent will be a part of the design
- The role of the agent during production is guiding a product along the production cells and collecting manufacturing data.
- At the end, the agent will embed itself in the product hardware.

Distribution

- If possible, the embedded agent can support the distribution.
- All kind of environmental conditions (shock, temperature, pressure etc.) can be monitored by sensors and collected by the agent.

Usage

- The agent can be the interface to the device
- Hints, manual, status can be made available to the end user.
- Usage data can be collected.
- Redesign hints can be reported to the manufacturer
- Wearing of components can be monitored

Example: vacuum cleaner

台	Battery	
Battery S	Status (click to refresh)	
	Charge (0 - 100%)	_
	89.13	
	Voltage (mV)	
	16671.00	
	Current (mA)	
	1156.00	
	Capacity (mAh)	
	2696.00	

Actual implementation

Repair

- Marketplace for spare parts
- Reuse of parts
- 3D printing info for parts

Recycling

- Economic value and life expectancy for parts
- Reuse of rare materials (rare earth elements, expensive elements). Urban ore
- Feedback to manufacturer: what are the weak parts in the design.

Urban ore

Points of concern

- Security
- Reliability of the system and data
- Privacy
- Ownership of data

Thank you for your attention Questions?

