
© 2019 Nokia1 <Public>

Software Robustness Tutorial
Testing of Complex Telecommunications Solutions

Vincent Sinclair/Abhaya Asthana

24-03-2019

© 2019 Nokia2

Topics

<Public>

1. Reliability in Telecommunications Networks

ïOverview of Nokia

ïCurrent & Future Telecommunications Networks

ïReliability Requirements in Telecommunications Networks

2. Software Robustness

ïDefinition

ïExamples of Software Robustness Defects

ïOrigin of Software Robustness Defects

3. Software Robustness Testing

ïRole of Software Robustness Tester

ïSoftware Robustness Testing as a Distributed Activity

4. Building a Software Robustness Test Plan, including Fault Modelling

ï Inputs to the software robustness test plan

ïSoftware Robustness Test Case Examples

ïExtending Typical Stability Run

ïProcedural Reliability

ïChallenges for testers

5. Conclusions

© 2019 Nokia3

1.Reliability in Telecommunications Networks

<Public>

© 2019 Nokia4

Nokia: Long History of Successful Change

1865

2014

2015

Mobile
devices

Siemens Com

Motorola Solutions

Alcatel-Lucent

Withings
Nakina Systems
Gainspeed

Public

2019

© 2019 Nokia5

Telephony
begins

Analog
revolution

Digital
revolution

Mobile
revolution

The new
connectivity

Long distance voice
communication

Voice, data, and video
communication

Wireless
communication

Intelligent and seamless
connectivity through the Cloud

Nokia

At the forefront of every fundamental change in how we communicate and connect

Bell Telephone Laboratories
formed in 1925

Å Copper networks
Å Circuit switches
Å Amplifiers

Å Laser
Å Satellite communications
Å UNIX
Å DWDM
Å 100Gbps optical transport
Å 400G routers

Å First ever calls
on GSM and LTE

Å First car phone
Å Commercialization of

Small Cells
Å MIMO

Å 5G
Å G.Fast: 1Gbpsover copper
Å Optical super channels
Å Terabit IP routing
Å Datacenter infrastructure and

applications for the Cloud
Å Smart sensors for the

Internet of Things

Public

© 2019 Nokia6 Public

The past
Breathtaking rate of innovation in communication devices and networks

Devices

Networks

© 2019 Nokia7

BELL LABS IRELAND: RESEARCH STRATEGY

Redefining user
experience

Future-proof flexible
networks

Massively capable
infrastructure

òDrop-and-forgetó

small cells

Cognitive cloud:

Zero-touch control

Infallible

context awareness

in real -time

Massive MIMO:

Squeezing the last

from spectrum

Energy-autonomous

infrastructure

Zero-footprint

thermal

management

© 2019 Nokia8

Current Telecommunications Networks

<Public>

4G

© 2019 Nokia9 <Public>

The future of communications
Rich, interactive, unified contextual communications

© 2019 Nokia10

Future Network: Latency Matters ¤

vRAN < 4ms

<Public>

© 2019 Nokia11

The Future is Different than the Past¤¯or were not in Kansas anymore¯

Past Future

Solutions Technology -driven Human/Business need driven

Driver
Consumer

(BW)
Industry

(Latency & SLA)

Architecture Heavily Centralized Massively Distributed

Partnership Limited APIs Co-design & Open specs

Standards Lead Follow

Investment
Singular

(Operator only)
Multiple & Cooperative

(Manycontributors/new players)

Flexibility
Limited

(Provisioned)
Large

(Software definable)

Sharing
Static and Limited

(HW VPNs)
Dynamic and Infinite

(SW Slices)

Innovation Speed
Per annum/decade

(new services)
Per hour/day

(new apps)

<Public>

© 2019 Nokia12

2. Software Robustness

<Public>

© 2019 Nokia13

Robustness in Telecommunication Networks ±Network Focus

<Public>

Å Measure is cell availability, excluding the blocked by user state (BLU).

Å It gives the percentage of available time compared to the total time
that cell should be available.

Å The counter is incremented by 1 approximately every 10 seconds when
"Cell Operational State is enabled".

Å The counter is incremented with value 1 approximately every 10
seconds when cell "Administrative State is locked" or "Energy State is
energySaving" or "Local State is blocked".

© 2019 Nokia14

Robustness in Telecommunication Networks ±User Focus

<Public>

Telco Operator view of reliability is changing, driven by increasing end user expectations:

Move from landline to mobile communications

Dependency on mobile communications

Today, many Telco companies have performance focused on KPIs such as:

Call set-up success rate, Call drop rate, Session set-up rate, Session retain rate.

Past Future

Reliability Network Element Focus End User Services Focus

Quality Number NE Defects/Outages Number Users Affected

Measures Five 9s % successful services delivered

Challenge ±Deliver software to meet future reliability expectations amidst increasing complexity

© 2019 Nokia15

Å 2019: Change of time in spring to daylight time caused a software crash for parking payment system. 300 car
parks could not charge for two days and had to provide free parking.

Å 2015: Plane Crash caused by computer configuration files being accidentally wiped from three engines.
The files needed to interpret the engine readings were deleted by mistake. This caused the affected propellers
to spin too slowly

Å 2014: Many RBS, NatWest and Ulster Bank customers locked out of their bank accounts. To prevent a repeat,
an additional ¼450m was devoted specifically to "increasing the system's resilience¯

Å 2013: Airline traffic control system fails. The breakdown occurred when the National Air Traffic Service (NATS)
computer system was making the switchover from the quieter night time mode to the busier daytime setup. It
was unable to handle the normal volume of flights for a Saturday.

Å 2013: Toyota firmware defect caused cars to accelerate unintentionally.

Software Robustness Outages ±Non Telecom

<Public>

© 2019 Nokia16

90 major incidents reported in EU (2013)

Å 19 countries reported 90 significant incidents and 9 countries reported no significant incidents.

Å Mobile networks most affected: Approximately half of the major incidents had an impact on mobile Internet
and mobile telephony.

Å Mobile network outages affect many users:

Å1.4 million users affected for each outage (data)

Å700 000 users affected for each outage (voice)

Å Impact on emergency calls:
A fifth of the major incidents had an impact on the emergency calls (112 access ±911 access in USA/Canada)

Å Looking more in detail, the detailed causes affecting most user connections were

Åsoftware misconfiguration

Åsoftware bugs

Åpower surges

Software Robustness Outages ±Telecom

Source: European Union Agency for Network and Information Security Annual Incident Reports 2013

<Public>

© 2019 Nokia17

Users Affected per Individual Outage (000S)

Source: European Union Agency for Network and Information Security Annual Incident Reports 2013

<Public>

© 2019 Nokia18

Root Causes

<Public>

Source: European Union Agency for Network and Information Security Annual Incident Reports 2013

Where do these software defects originate ?

© 2019 Nokia19

Defect Life Cycle

Å3rd Party SW Defects
ÅPlatform Defects
ÅLegacy Code Defects

C
u

s
to

m
e

r

Requirements:

ÅMissing
ÅErrors
ÅNetwork Info Missing
Å3rd Party Software
ÅPlatform

Internally
Found Defect

Escaped
DefectArchitecture:

ÅHot Spots
ÅSingle Points of

Failure

What happens when an outage occurs ?

D&D:

ÅReqs misunderstood

ÅDesign missing/Gaps

ÅDesign Errors

ÅFeature Interactions

ÅCoding Logic Errors

ÅCoding Standard Errors

ÅEscalation
ÅUrgent Fix
ÅRCA
ÅMeetings.¤

Requirements Architecture
Design &

Development

Defect Feedback

System Test

<Public>

© 2019 Nokia20

Real World View of Failures and Recovery

Challenge for tester: Build a test plan to test the most critical failures

Recovery
Scheme A

Manual Recovery

Failure
Detector

2. Lots of failure detectors, including
every subroutine/ object that
checks a return code

3. Alarm correlation and other logic determines

likely primary failure mode and activates
appropriate recovery scheme

4. A (relatively) small number

of primary recovery
schemes are supported

5. An escalation strategy assures

that if activated recovery
strategy doesnt succeed, then
a more aggressive recovery is
activated

6. If automatic recovery

doesnt successfully
complete, then
maintenance engineers
initiate manual recovery

Failure Isolation.

Activation of Appropriate
Recovery Scheme Normal

Operation

1. Large number
of potential
failures

<Public>

© 2019 Nokia21

3. Software Robustness Testing

<Public>

© 2019 Nokia22

Why Software Robustness Testing?

Å Customer perception:

- End users are more and more dependent on having reliable telecommunications services

- Telco companies are demanding higher and higher levels of reliability

Å Traditional functional testing strives to minimize the number of residual defects in product

ÅInevitably, latent defects ¬leak into the field, causing in-service failures

Å Strategy: Confront running system with realistic fault events to verify that system automatically detects
and recovers rapidly with minimal overall impact on service

Å Failure acceleration:

- Intentionally inserting fault to trigger the fault recovery can achieve more thorough testing in a
controlled environment and within a reasonable time frame

- Identify software robustness defects

- Can identify design flaws and provide feedback to the design teams to improve fault detection,
isolation and recovery

<Public>

23 © Nokia 2019

Role of Software Robustness Tester

This is a different way of thinking

What are the critical failures that can realistically occur ?

How can I stress/break the software to trigger those failures ?

How can I test the detection, isolation and recovery from software failure ?

<Public>

(Fault Tolerant Mindset

http://www.google.ie/imgres?imgurl=http://1.bp.blogspot.com/-TGwUd3W-1yw/UejKfQy9b2I/AAAAAAAABfQ/N7LA37XdHf4/s640/0511-1009-1319-0462_Black_and_White_Cartoon_of_a_Stressed_Out_Guy_with_the_Word_Overload_clipart_image_1.jpg&imgrefurl=http://ajlaaazam.blogspot.com/2013_07_01_archive.html&h=269&w=350&tbnid=rDUzxTZ2gIkoDM:&zoom=1&docid=FeQ7hI9HWLP4lM&ei=zinjVPPWNMGE7gasm4CQCw&tbm=isch&ved=0CDMQMygrMCs4ZA

© 2019 Nokia24

Typical Software System Structure

ÁLayers may be developed in separate organizations.
(Platform, Middleware, Application)

ÁSome components may come from external software
suppliers

ÁA failure in one layer may need to be detected and
recovered from a different layer.

ÁWe need to test that there is a solid connection between
the failure detection and the failure recovery mechanism.

ÁFor example, a failure in application layer may need a
recovery action in the software platform layer.

Testing Within a Layer

T
e

s
ti
n

g
 B

e
tw

e
e

n
 a

n
d

A

c
ro

s
s
 L

a
y
e

rs

Hardware + OS

Software
Applications

Software Platform

Each Higher Layer is responsible for testing:

Åwithin layers

Åbetween layers

Åacross the lower layers

So, where do we start ?

<Public>

© 2019 Nokia25

Telecomm Software Stack

<Public>

© 2019 Nokia26

R
o

b
u
st

n
e

ss
 T

e
st

in
g

Software Robustness Testing - Distributed Across Many Test Areas

Feature/Functional Testing

Stress Testing
(Robustness)

Stability Testing

System Testing

Fault Insertion Testing

Negative, Adversarial,
Breakage, Chaos, Free

Invalid inputs

Duplication

Stressful
environment

Network
congestion

Timing issues
........

Component/Feature
Interface Testing

Installation Testing
Data Migration Testing

Software robustness is tested as part of each individual test area

Robustness testing by phase ¤

NLT/Cluster Testing

User Doc Testing

Testing features/functions with invalid inputs. Test under stress.

Testing component interfaces for robustness to invalid inputs,
message errors, timing errors, missing/duplicate inputs.

Testing of the installation and configuration process. What could go
wrong? What could interrupt data migration?

System functionality testing with invalid inputs or system under
stress. What human errors can be made during OA&M procedures?

Stressing under high traffic load to trigger control mechanisms to
Detect, Isolate, Recover. Testing with invalid inputs.

Communication and application inter-working (message errors,
heartbeat failure, network congestion). Testing with multiple sites.

Mixed and varying traffic load, soak, growth and de-growth,
upgrades, routine maintenance actions

Testing of user procedures to identify robustness gaps

<Public>

© 2019 Nokia27

Who Performs Robustness Testing?

Unit
Test

(Dev)

Component
Test

Feature
Test

System
Test

NLT/E2E
/SLT

ÅInvalid inputs to functions

ÅBoundary tests

ÅMissing data/files

ÅInput overload/storms

ÅBoundary tests

ÅCPU/memory overload

ÅFeature interactions

ÅSoftware Upgrades

ÅUser interface/Usability testing (User docs)

ÅInteractions for large systems with multiple sites

ÅFailover/recovery

ÅI/O failures (Heartbeats/Timers)

ÅInvalid inputs/messages

ÅBoundary tests

ÅEnd to end scenario errors

<Public>

Lets look at how to build a complete software robustness test plan

© 2019 Nokia28

4. How to Build a Software Robustness Test Plan,
including Fault Modelling

<Public>

© 2019 Nokia29

Building a Complete Software Robustness Test Plan

Software

Robustness

Requirements

Hot Spots

Weak Points

Critical Interfaces

Where to focus our
software robustness

testing?Software Robustness Test Planning

Software Robustness Test Plan

Teat Plan 1
Feature Test

Test Plan 2
Interface
Testing

Test Plan 3
Stress Testing

Test Plan 4
Cluster Testing

The Test Plan is a complete view of the
software robustness testing.

It informs each test area what software
robustness testing they must cover.

The details of the actual testing are split
out amongst the individual test plans for
each test area.

This requires one person to co-ordinate software robustness testing across the different teams

Focus Areas for
Robustness

Testing
New Features

Complex Areas

New Interfaces

<Public>

© 2019 Nokia30

What Should Be Available Before Test Planning?

FUNCTION SOFTWARE ROBUSTNESS ACTIVITIES OUTPUTS AND RELATIONSHIP TO TESTING

SYSTEMS
ENGINEERING

Analysis of system interactions to identify what could go wrong.

Analysis of customer issues to identify robustness issues.

Develop requirements to prevent these failures.

List of system level software robustness requirements to address
during development (high level).

Customer scenarios, failure modes, error cases, corner cases, stress
scenarios

Informs testers what needs to be tested.

ARCHITECTS

Architect the software to meet the system level requirements.

Analysis of the product architecture to identify potential robustness
faults within the architecture, especially interface issues and resource
management.

Develop requirements to prevent these faults.

List of high risk components/features to focus testing
(high impact on failure, complex components, problematic
components).

Interface documents/descriptions.

List of hot spots and weak points.

DESIGNERS/
CODERS

Defensive programming and error checking:

* design of rainy-day cases, query failures, network errors

* design how to handle arguments out of range, null pointers, memory
allocation errors, etc.

Description of robustness elements of design

(typically at feature level)

Testers ask for: 1. List of system level software robustness requirements

2. List of customer scenarios to support, especially failure modes, error cases, corner cases

3. List of high risk components/features

4. Interface documents/descriptions

5. List of your productõs hot spots and weak points

6. Description of data structures, especially shared data

<Public>

