

"Architectural Blueprint Solution for Migrating towards FAR-EDGE"

Ambra Calà, Filippo Boschi, Paola Fantini, Giacomo Tavola, Marco Taisch

13th International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies – UBICOMM 2019 September 22 – 26, 2019 – Porto, Portugal

SIEMENS Towards the next industrial revolution

Characteristics of CPPS:

- ADAPTABILITY to changing production environment
- OPENESS to new features and functions
- FLEXIBILITY to different processing tasks
- MODULARITY to enable quick and economical changes

Source: Digital Factory: Smart manufacturing in the U.S. (siemens.com)

SIEMENS The FAR-EDGE Project - Objectives

The FAR-EDGE Platform will lower the barriers for manufacturers (including SMEs) to move towards the Industry 4.0

Flexible and fast integration of new technologies and devices

Reconfiguration and optimal production scheduling

Implementation of highly scalable solutions

 Validation and testing of alternative strategies for migration A REDGE

The digital transformation is not only a technological journey.

 The digital transformation has a big impact on different dimensions of the factory

 Holistic migration approaches are needed but have been neglected within research until now The FAR-EDGE Migration approach

incremental innovation towards digitalization by means of FAR-EDGE solution

SIEMENS

The Assessment Questionnaire supports context analysis and goal definition.

Goal of the interview:

- Assess the current production system
- Identify potential of digital improvements according to the business strategy

Image: Second systemTechnical dimensionImage: Second systemOperational dimensionImage: Human dimension

Dr. Ambra Calà H2020 Research and Innovation Action - This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N. 1/2002

The Migration Matrix SIEMENS

The Migration Matrix supports the identification and evaluation of migration alternatives towards a higher level of digital maturity by means of FAR-EDGE solution.

AS-IS

SIEMENS The Gap Analysis Level 1 Level 2 Level 1 Level 3 Level 2 Control automation architecture Level 3 Definition of migration scenarios: Level 4 Equipment / machinery connectivity and communication protocols Analyze the gap between AS-IS and TO-BE ٠ 影 Error monitoring Identify and evaluate possible migration ٠ scenarios Systems for predictive maintenance Equipment data management Technical Maintenance scheduling Automation 80 TO-BE AS-IS 4 Technical Failure analysis Human 3 Analytics 2 **IT Operator** 0 Operational Technical Industry 4.0 / digital technologies skills g Virtualization Virtualization Impact on employees Operational **Øperational** Analytics Automation Dr. Ambra Calà

Level 4

Level 5

Level 5

Example of implementation roadmap of the FAR-EDGE Automation for plug-and-produce equipment reconfigurability.

	1 Virtual machine installation on the equipment	
Field Abstraction	2 EAS for Edge Adapter development	
Edge Automation	3 Implementation of the maintenance plan for Edge Infrastr.	
Service	4 Edge Training for technical and maintenance staff	
Dervice	5 Edge Training for operational staff	
Edge Gateway	6 VM installation on the work cell (Edge Gateway)	
	7 Pull- and event-based SCADA, DCS and PLC functionalities	
	8 Edge Training to platform manager	
	9 Ensure LAN connectivity to the Field	
Connectivity	10 Connect Edge Adapter to equipment	
	11 Connect Edge Adapter to Edge Gateway	
	12 Ledger integration in the factory network	
Ledger	13 Connect Ledger with Edge Nodes / Edge Adapters	
Leuger	14 Implementation of the maintenance plan for Ledger Infrastr.	
	15 Ledger training / new specific role	
	16 Cloud installation on a computer	
Cloud	17 Migrate ERP/PLM services to the Cloud server	
	18 Define cloud identity manager for Ledger	
	19 Implementation of the maintenance plan for the Cloud	
	20 Further training for Cloud maintenance and management	

SIEMENS Example: PnP Reconfigurability

Business goal: versatile production in a mass-customization scenario

Enterprise Eco systems	P	PLM ERP		CLOUD
	Open API for Automation	Open API for Analytics	Open API for Virtualization	
The intelligent product	-	Product		LEDGER
The intelligent Work cell	ſ	Work cell		EDGE
	oduce ndheld anner	One Spindle Nut Runner	Display	FIELD

					FAR-EDGE			
MP 1 Automation	Level 1	Level 2	Level 3	Level 4	Level 5			
	Equipment/Machinery connectivity and communication protocols							
	Not available	Basic connectivity (RS232-RS485)	Local network through LAN/WAN	Networked with vendor specific API, integrable with other systems	Networked with standardized mechanisms and standard API			
\sim	Physical production process control							
	Not available	Locally, per station / equipment	Centrally available through SCADA	Available and analyzed through MES at Factory level	Available and analyzed through the Cloud			
	Cyber-Physical System characteristics of the product							
	No identification or serialization available	Simple identification (e.g. Barcodes or RFID tags)	Sensors and actuators attached to the product	Sensors readings are processed by the product	The product exhibits CPS functionality			
-	Reconfiguration of shop-floor equipment							
00	Only manual reconfiguration	Supported by HMI at machine level	Configuration managed through central supervisor system	Configuration centrally managed by MES or MOM	Centrally managed according to ERP through the Cloud			
	Production IT department							
θ	Not available	External service provider for traditional IT systems	Internal for traditional IT systems	External service provider for all digital systems from field to cloud	Internal for all digital systems from field to cloud			
25	Production employees' skills							
لما	No experience with digital technologies	Little experience with digital technologies	Digital skills in some technology focused areas	Digital and data analysis skills in most areas of the business	Cutting edge digital and analytical skills are prevalent <u>all</u> <u>across</u> the factory			

10

Expected impact at each dimension:

- Increased flexibility
- Decreased configuring costs and effort
- o Increased factory automation level
- Increased production data monitoring
- Improved operation quality
- Reduced human error
- o Better instructions
- Fewer skills needed

SIEMENS FAR-EDGE migration blueprints

The **migration blueprints** are based on the use cases developed within the project with reference to FAR-EDGE domains:

- Automation
- Analytics
- Simulation

The aim is to provide a reference for deployment configuration variants of the FAR-EDGE architecture "TO-BE" Scenarios:

- Plug-and-produce equipment automatic reconfiguration
- Operator support for smart sequencing
- Analytics for improved accuracy of assembly times
- o Predictive maintenance
- Secure order execution system
- Analysis and certification of KPIs for production modules

o ...

The proposed **migration approach** leads to the definition of migration strategies towards the digital manufacturing automation.

Benefits for manufacturers

- Understand the value of digital transformation
- Shape targeted strategies
- Improvement in innovation
- Prioritization of value-reach opportunities

For more information: <u>https://www.edge4industry.eu/product/migration-services/</u>

THANK YOU!

Dr. Ambra Calà Siemens AG Corporate Technology ambra.cala@siemens.com