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➢ Over 5% of the world’s population (466 million 
people) has disabling hearing loss (40dB/30dB)1
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1) https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss

➢ Develop an alarm sound classification system in 
smartphone using deep neural network (DNN)

➢ As a result, DHH can go out safely using this system
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Related Work
➢Ontenna

• an interface focusing on vibration
• let the user know sound by vibration in real-time
• no sound recognition system

➢Google Live Transcribe
• mainly for voice recognition
• recognize environmental sounds
• number of supported sound is limited

➢SeeSound
• send to the user via vibration and pop-up 

notifications
• works only in the home

https://ontenna.jp

https://www.see-sound.com
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Development System

➢The classification and transmission 
application run on a smartphone without 
connecting the internet.

➢The basic flow of the proposed system

1. Collect environmental sounds with a smartphone

2. Notify smartphone when an alarm sound is 
identified

➢Deep Learning (DL) is used for classification

• Keras was used for implementing DL

➢The system works in iPhone now



Development System
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Can select 3NN, 4DNN and 5DNN

Recording function

Logs of classifition result

Recognition Time

Classifition ratio for each class
ex)Ambulance Siren, Horn, Chari bell

Volume

Snapshot of develop smartphone application
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Calcification Algorithm

➢The alarm classifying flow

1. Continuous collection of environmental sounds

2. If volume data exceeding the threshold is detected, 
record audio data for a certain period.

3. Specify the alarm class (horns, bicycle bells, 
ambulance sirens, etc.) of the recorded audio data.

➢ Because the nature of the alarm sound 
tends to be monotonous, we apply the 
short-time Fourier transform (STFT) 
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Calcification Algorithm

➢Operation of the classification application

1. Use a smartphone microphone and collect sound 
every 1024 [frames] using 32-bit single-precision 
floating-point numbers (-1.0 to 1.0).

2. When the absolute value of the buffered single 
precision floating-point buffer exceeds the 
threshold value (0.3), identification processing 
starts.

3. Multiply the buffer by 231 and change the buffer 
range to a 32-bit integer type, then execute STFT. 

4. Input of logarithmic power spectrum to DNN.

5. Display the classification result on the screen.
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Calcification Algorithm

➢In a real environment, the target sound would continue to 
sound.

➢Therefore, the final classification result is determined by the 
following algorithm (called integrated judgment process)

1. Evaluate sounds continuous (1 to 10 times). 

2. If there is more than one classification result from a specific 
sound other than noise,

A) Calculate the sum of outputs.

B) The largest of the noise exclusions is used as the final classification result. 

3. If all classification results are noise,

A) Regard the final classification result as noise.
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Experiments

A. Basic performance of the classification system

➢Targets: 5 classes

• horn, bicycle bell, ambulance siren, fire alarm, noises 
(footsteps, car driving, voices, door opening/closing, 
hitting desks, and rubbing plastic bags)

➢Evaluation: 5-fold CV

• 25,000 pieces of training and evaluation data (5,000 
pieces × 5 classes) with a maximum of 1,000 epochs 
(input layer: 513, hidden layer: 128, output layer: 5).



Experiments

B. Performance in a noisy environment

➢Targets: 5 classes
• horn, bicycle bell, ambulance siren, fire alarm, noises

➢Evaluation:
• Data: noisy environment of 50.5 to 100.3 [dB].

• Method: simple judgement
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Experiments

C. Performance for unlearned horn sounds

➢Targets: 5 classes
• horn, bicycle bell, ambulance siren, fire alarm, noises

➢Evaluation:
• Data: new type of horn sound (20 times * 7 types) 

different from the learning data in a noisy environment. 

• Method: simple judgement
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Experiments

D. Adding new type of data from the web

➢Targets: 5 classes
• horn, bicycle bell, ambulance siren, fire alarm, noises

➢Evaluation:
• Data: new 428 car horn sounds, 169 bicycle bell sounds, 

and 929 ambulance siren sounds

• Method: 5-fold CV (simple judgement)
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Discussion

➢Data collection

• lacks of labeled plenty clean data

• the crowdsourcing is one example of a solution

➢Recognition start timing

• the fast response time is vital because of the dangerous 
situation

➢Direction of the sound source

• DHH peoples are generally hard to notice the direction

• This problem would be resolved by using a microphone 
array and direction estimate algorithms
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Conclusion

➢We have proposed and developed an alarm 
sound classification system using DNN by 
smartphones.

➢Evaluation experiments were performed to 
verify the effectiveness of the system.

➢We also discuss the limitation of the 
developed system and the expectation of the 
improved system by overcoming these 
limitations.
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