Screen Printed BaTiO₃ for CO₂ Gas Sensor

Fabien LE PENNEC, Ph.D Student

fabien.lepennec@im2np.fr

IM2NP UMR CNRS 7334

F. Le Pennec, S. Bernardini, M. Hijazi, C. Perrin-Pellegrino, J-L. Seguin, K. Aguir and M. Bendahan

Fabien LE PENNEC is a Ph.D. student (3^{rd} year) in the Microsensors and Instrumentation team at IM2NP laboratory, Marseille, France. The research performed within the framework of his thesis concerned the realization and the characterization of the sensitive layer (based on metal oxide) as a CO₂ sensor.

Ph.D Student LE PENNEC Fabien

Outline

2/18

Introduction to the MOX and BaTiO₃

- Introduction & context
- Operating principle of MOX
- Sensitive material: BaTiO₃ & Structural study BaTiO₃

Electrical sensor characterization

- Experimental setup: sensor test bench
- Resistance response for 1000 ppm CO₂
- Optimal operating temperature of BaTiO₃ Sensor
- Sensitivity response of BaTiO₃ to CO₂
- Repeatability of $BaTiO_3$ sensor to one concentration of CO_2
- Sensitivity response to different relative humidity

Conclusion and prospective

Introduction to the MOX and BaTiO₃

Introduction & context

The carbon dioxide (CO₂) are:

- High thermal stability
- Odorless
- Colorless
- Average concentration ≈ 400 ppm

The CO₂ interest:

- Greenhouse effect (contribution: 9-26%)
- The global warming
- The outdoor air monitoring is a major social issue

The commercial instruments for CO₂ sensing

The technologies based on IR detection are the most used for CO₂ sensing:

- Selectivity to CO₂
- High performance

However, their **drawbacks** are:

- Cost of a few hundred euros
- Incompressible size of the sensor
- High power consumption

5/18

Analyzer CO/CO₂ Fuji Electrics

EE894 Elektronik

→ The MOX gas sensors respond to these disadvantages:

- High sensitivity
- Low cost
- Small size
- Low electrical consumption (<25 mW)

MOX

Operating principle of MOX microsensors

6/18

Sensitive material: BaTiO₃

7/18

State of the art:

material	Operating T° (°C)	Measurement method	response	[CO ₂] (%)	[Ref]
CuO-BaTiO ₃ - Ag(1mol%)	470	Capacitive	7.74	2% (20000 ppm)	[1]
BaTiO ₃ -LaCl ₃ (10%wt)	400	Resistance	1.57	1% (10000 ppm)	[2]
BaTiO ₃	200	Resistance	1.1	0.05% (500 ppm)	[3]
CuO-BaTiO ₃	412	Capacitive	2.34	2% (20000 ppm)	[4]
BaTiO ₃	280	Resistance		0.5% (500 ppm)	This work

[1] T. Ishihara, Sensors and actuators 1995
[3] S.B. Rudraswamy, IEEE 2012
[2] M.S. Lee, Sensors and actuators 2000
[4] B. Liao, Sensors and actuators 2001

\rightarrow First step : study of BaTiO₃ material alone

Sensitive material: BaTiO₃

Process of deposited BaTiO₃:

Need to have a quick validation of the material

- \rightarrow BaTiO₃ nanopowder from Sigma-Aldrich[®]
- \rightarrow Process of BaTiO₃ depositing: screen printing

Sensitive film deposition process:

• Mixture:

 \rightarrow 4 g of BaTiO₃ + 1.5 g of glycerol

- Annealing:
 - \rightarrow On plate 3 min, at 450°C for BaTiO₃
- Thick layer ≈ 7µm

Structural study BaTiO₃

The XRD diffractogram of BaTiO₃ thick film:

Determined by X-ray Diffraction (XRD) with a Philip's X'Pert MPD equipment (I = 1.54Å)

Phase of $BaTiO_3 \rightarrow Tetragonal$

Electrical Sensor characterization

Experimental setup: sensor test bench

Our automated bench:

- Generation system (3 channels = 3 gases: CO₂ / CO / NO₂) and dilution (ppb / ppm / %)
- Climatic chamber: controlled environment (T °: 5 to 100 ° C / RH: 0% to 90%)
- Test chamber linked to multichannel acquisition system

Resistance response for 1000 ppm CO₂

 \rightarrow The sensitive response agrees with the literature:

- CO₂ are an oxidizing gas
- BaTiO₃ are a n-type semiconductor

12/18

Influence of the operating temperature of BaTiO₃ Sensor

Temperature (°C)

13/18

 \rightarrow The sensor responses increase with the temperature

→We carried out our measurements at a temperature of 280°C which is a good compromise between the sensitivity and the heater electrical consumption

imenp

Sensitivity response of $BaTiO_3$ to different concentrations of CO_2 14/18

imenp

Repeatability of BaTiO₃ sensor to one concentration of CO₂

 \rightarrow The sensor response presents a stable behavior

 \rightarrow We obtained a good sensitive response with a good repeatability

15/18

Sensitivity response to different relative humidities 16/18

 \rightarrow The highest responses were obtained for the lowest R.H.

Conclusion and prospective

Conclusion and prospectives

Conclusion:

- → We have determinated the operating temperature (280°C) and the relative humidity influence
- → We developed a sensor based on BaTiO₃ with a high sensitivity to CO₂ and respond as n-type for oxidizing gas
- → We notice a repeatability behavior for a CO_2 concentration equals to 1500 ppm

Prospective:

- → Study of several depositing methods of BaTiO₃ to enhance the aging of the sensor
- \rightarrow Study of BaTiO₃ composite films

Acknowledgments

People working on this project IM2NP, MCI Team

Ph.D Student LE PENNEC Fabien

Dr. PERRIN-PELLIGRINO Carine

Dr. BERNARDINI Sandrine

Pr BENDAHAN Marc

Pr AGUIR Khalifa

Contact authors: <u>fabien.lepennec@im2np.fr</u> <u>sandrine.bernardini@im2np.fr</u> <u>marc.bendahan@im2np.fr</u>

Institut Matériaux Microélectronique Nanosciences Provence

Thank you for your attention !

