

A novel low-concentration isopropanol gas sensor based on Fe-doped ZnO nanoneedles

Yifan Luo^{1,3}, Ahmadou Ly², Driss Lahem², Marc Debliquy¹, Chao Zhang³

Yifan.LUO@umons.ac.be Ahmadou.Ly@materianova.be Marc.DEBLIQUY@umons.ac.be Driss.Lahem@materianova.be³ College of College of Mechanical Engineering ¹Materials Sciences Department, University of Mons ² Material Science Department, Materia Nova ³College of College of Mechanical Engineering

Content

Introduction

Strategy and methods

Materials Characterization

Gas sensing

Conclusion

Introduction: Project PATHACOV

Interreg

France-Wallonie-Vlaanderen

PATHACOV HUMAN DISEASES DIAGNOSIS BY VOC ANALYSIS IN BREATH

www.interreg-fwvl.eu

PATHACOV

Background

Lung cancer

- Lung cancer: fastest increase in morbidity and mortality
- 28% of the cancers are lung cancer
- Patients increase 45% to 190% until 2030.
- Average 5-year survival chance: 14%
- 16% of the patients can get early diagnosis.

Distribution of the number of people who died of trachea, bronchitis and lung cancer in 2012

Common lung cancer detection method

CT (LDCT)

PET-CT

Breath analysis

Chest X-ray

Concentrations (ppb) of VOCs contains in Lung cancer patients

Figure 12. VOC biomarkers in breath have been reported for a large number of diseases in the literature [53,54], highlighting the wide disease relevance of Breath Biopsy*.

VOC groups	VOCs	Patients	Healthy
Straight chain alkanes	Pentane	0.73-17.50	6.84-94.36
	2- methylpentane	0.31-3.77	2.37-107.80
	Hexane	0.82-1.88	1.75-6.31
	Decane	0.06-62.9	0.26-18.5
Alcohol	Propanol	5.6-473	0-7
	Isopropanol	8.7-989.9	3.0-14.17
Ketone	Acetone	34.6-390.6	14.4-531.5
	Butanone	3.8-38.8	0.5-2.9
Aromatic hydrocarbons	Benzene	0.08-3.82	1.15-14.97
	Toluene	1.51-17.10	1.45-37.21
	Ethylbenzene	1.45-3.16	2.22-18.38
Unsaturated hydrocarbon	Isoprene	3130-8863	1399-6859

Traditional method for breath analysis

Oluwasola Lawal et al., Metabolomics, 2017, 13, 110.

Metal oxide gas sensor

Zinc Oxide (ZnO), Tin Oxide (SnO₂), Tungsten oxide (WO₃), Titanium dioxide (TiO₂).....

- Good response
- Easy to prepare
- Easy to modify

Disadvantage

- High working temperature
- Poor selectivity
- Possible humidity effect

Response-recovery curves of a 2D nanosheetassembled Pd-ZnO microflowers to 200 ppm acetone at 370 $^{\circ}$ C. [1] University of Mons

Improvement of the sensing performance

$$\theta = \frac{\mathbf{k}_{ads} \bullet \mathbf{p}_{A}}{\mathbf{k}_{ads} \bullet \mathbf{p}_{A} + \mathbf{k}_{des}} \bullet [1 - \exp(\frac{-t}{\tau})]$$

p_A: Pressure in the system;

t : Reaction time;

k_{ads}: Adsorption coefficient;
k_{des}: Desorption coefficient;
θ: Surface coverage

 $k_{ads} = k_{ads}^0 \cdot \exp\left(\frac{-E_{ads}}{k_p T}\right)$

 $k_{des} = k_{des}^{0} \cdot \exp\left(\frac{-E_{des}}{k_{P}T}\right)$

Reducing adsorption and desorption energy

University of Mons

Improvement of the sensing performance

Preparation of ZnO nanoneedles

Preparation of Fe-doped ZnO nanoneedles

Methods of making sensors: Spray coating

Treatment: Pre-heating at 350°C before gas sensing test.

Schematic diagram of the sensor substrate

Schematic of the gas sensing system

Response time: time to reach 90% of the response Recovery time: time to recover to 110% of the baseline

Characterization of Fe-doped ZnO nanoneedles

XRD and SEM

XRD patterns of pure and Fe-doped ZnO nanoneedles

(a) (b)5.00um SU8020 3.0kV 12.5mm x8.00k SE(L) U8020 3.0kV 12.1mm x8.00k SE(L) SU8020 3.0kV 12.6mm x8.00k SE(L 0kV 12.5mm x8.00k SE(L

SEM image of (a)ZnO (b) 1 at% (c) 3 at% (d) 5 at% Fe-doped ZnO on the surface of sensor substrates

Characterization of Fe-doped ZnO nanoneedles

BET

 N_2 adsorption/desprotion curve of the (a) pure and (b) 1 at% Fe-doped ZnO.

Specific surface area:

Pure: 8.6422 m²/g

1 at%: 18.974 m²/g

Sensing performance of Fe-doped ZnO nanoneedles

(a) Electrical resistance change and (b) response of pure and Fe doped ZnO nanoneedles to isopropanol with 50% of humidity at 275°C

Temperature effect on the sensors

Response to 5 ppm isopropanol of different Fe-doped ZnO under different operating temperature

- Optimal temperature at 275°C;
- Fe doping decreases the temperature

Humidity effect of Fe-doped ZnO nanoneedles

(a) electrical resistance change of different Fe-doped ZnO. (b) Response of 5 at% Fe-doped ZnO under different RH% to 5 ppm isopropanol at 275°C

Sensing mechanism of Fe-doped ZnO nanoneedles

Representation of the contact between the needles and the potential barrier between different needles

Schematic figure for the isopropanol sensing process

 $CH_3CH(OH)CH_3 + 90^- \rightarrow 3CO_2 + 4H_2O + 9e^-$

Conclusion for this presentation

- The ZnO nanoneedles were successfully doped with Fe by slowly adding Fe(NO₃)₃ into the precursor.
- Fe doping change the morphology of ZnO needles and increase the specific surface area.
- The 5 at% Fe-doped ZnO showed the best sensing performance to isopropanol at 275°C.
- The improvement of sensing properties is considered as the adjustment of the band structure by the doping of Fe and the increase of specific surface area.
- More works like DFT calculation can be done to further study the mechanism.

