
Deep Reinforcement Learning
for Power Grid Operations

ENERGY 2020 Tutorial

Eric MSP Veith <eric.veith@offis.de>



Motivation

September 20, 2020 Motivation A Gentle Introduction, to Reinforcement Learning The Cross-Entropy Method The Bellman Principle of Optimality Applying the Bellman Principle of Optimality:, from Value Iteration, to Q Learning Deep Q Networks How to Proceed Further1



Motivation
Why more AI in the Power Grid?

> Power prid operations increase in complexity
> More DERs
> New market concepts, e.g., local markets
> Anciallary services also from DERs, also market-based

> AI technologies already widespread
> Forecasting
> Multi-Agent Systems (mostly rule-based)
> Distributed heuristics (e.g., schedule planning)

> Resilience: Reaction for the “unknown unknowns”
> Bottom line: Dynamic strategy development needed; Deep

Reinforcement Learning (DRL) is the next meta-level
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A Gentle Introduction
to Reinforcement Learning
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About Reinforcement Learning
DRL in Relation to other Terms in Deep Learning

> Model-based Learning: ANN
develops problem model (vs.
Instance-based Learning)

> Supervised Learning
> Classification
> Regression

> Unsupervised Learning
> Clustering

> Reinforcement Learning
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About Reinforcement Learning
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About Reinforcement Learning
DRL in Relation to other Terms in Deep Learning
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Basic Terminology
Agent, Sensors, Actuators

Agent

Sensors
Actuators

> Agent: Acting Entity
> Through Sensors, the Agent

perceives its environment
> . . . which it acts upon with its

Actuators.
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Basic Terminology
Agent, Sensors, Actuators: An Example

> Agent: Mouse
> Sensors: Board (encoding?)
> Actuators: Forward,

backward, turn ±90°
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Basic Terminology
Agent, Sensors, Actuators: An Example

(1, 1)(0, 1)

(0, 2)

(0, 0) (1, 0) (2, 0)

(2, 1)

(2, 2)(1, 2)

> Agent: Vacuum bot
> Sensoren: Area immediately

in front of the bot
> Encoding:

dirty ∈ {yes, no}

> Local vs. global
> Sensors noisy?

> Actuators: Forward,
backward, turn ±90°

> Slippage?
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Reward
Feedback for the Agent

(1, 1)(0, 1)

(0, 2)

(0, 0) (1, 0) (2, 0)

(2, 1)

(2, 2)(1, 2)

(3, 0)

(3, 2)

(Wand)

> What route do mouse and bot take?

> . . . or, even more interisting: Why do mouse/bot take a
particular route?
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Reward
Feedback to the Agent

> Reward: Feedback from the environment about the agent’s
action regarding the agent’s goal

> “Reward reinforces the agent to do the right thing.”
> Scalar: Unitless, no futher form — big, small, positive,

negative, . . .
> No requirements to frequency; most common: per fixed t, per

action
> Local: Rewards the immediate action
> Training based on reward (directly or indirectly)

Problem: associating actions and rewards (e.g., bank robbery:
high immediate reward, long-term: not so good)
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Examples for Reward Values

Stock Trading Profits/Losses
Chess Values of a chess piece, value of a position, result of a

game (ELO; or simply win: +1, draw: 0, loss: -1)
Dopamine Level Biological reward: Joy
Vacuum Bot Fill state of the dust tank

Arcade +1 for every frame survived, +1 for every enemy
overcome, . . .

Web Crawler Information gain

Power Grid Voltage band, CO2, MW from DER, line losses
avoided , rel. self-supply, . . .

Caution Agent maximizes reward — not always the same as
succeeding at an objective
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Markov Process
Model for Observable Systems

> System with N states
> State Space

S = {s1, s2, . . . , sN} (1)
> Markov Property: Chain without memory

> Let Y = (Xt)t∈N be a space of random numbers, Xt ∈ S
> Y is a markov chain, iff:

P(Xt+1 = sjt+1 | Xt = sjt ,Xt−1 = sjt−1 , . . . ,X0 = sj0) (2)
= P(Xt+1 = sjt+1 | Xt = sjt ). (3)

> Transition Probabilities:

pij(t) := P(Xt+1 = sj | Xt = si ), i ,j = 1, . . . ,m (4)

> Transitions Matrix:

M(t) = (pij(t))si ,sj∈S , |M| = N × N (5)
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Weather Prediction
A simple Markov Process

> States: sunny or rainy: S = {s, r}
> History: [s, s, s, r , s, . . . ]
> Probabilities calculated from history: M:

s r
s 0.8 0.2
r 0.1 0.9

s r0,8 0,9

0,2

0,1
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Markov Chains I
Fun with texts

use strict;
use warnings;
use Algorithm::MarkovChain;
use Path::Class;
use autodie; # die if problem reading or writing a file

my @inputs = qw(king_james_bible.txt lovecraft_complete.txt);
my $dir = dir(".");
my $f = "";
my @symbols = ();
foreach $f (@inputs) {

my $file = $dir->file($f);
my $lcounter = 0;
my $wcounter = 0;
my $file_handle = $file->openr();
while( my $line = $file_handle->getline() ) {

September 20, 2020 Motivation A Gentle Introduction, to Reinforcement Learning The Cross-Entropy Method The Bellman Principle of Optimality Applying the Bellman Principle of Optimality:, from Value Iteration, to Q Learning Deep Q Networks How to Proceed Further15



Markov Chains II
Fun with texts

chomp ($line);
my @words = split(' ', $line);
push(@symbols, @words);
$lcounter++;
$wcounter += scalar(@words);

}
print "$lcounter lines, $wcounter words read from $f\n";

}
my $chain = Algorithm::MarkovChain::->new();
$chain->seed(symbols => \@symbols, longest => 6);
print "About to spew ...\n";
print "---\n\n";
foreach (1 .. 20) {

my @newness = $chain->spew(length => 40,
complete => [ qw( the ) ]);

print join (" ", @newness), ".\n\n";
}
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Markov Chains III
Fun with texts

$ ./lovebible.pl 2> /dev/null
99820 lines, 821134 words read from king_james_bible.txt
16536 lines, 775603 words read from lovecraft_complete.txt
About to spew ...
---

the backwoods folk -had glimpsed the battered mantel,
rickety furniture, and ragged draperies. It spread

over it a↪→

robber, a shedder of blood, when I listened with mad
intentness. At last you know!At last to come to see

me. Now↪→

Absalom.

(Charlie Stross — http:

//www.antipope.org/charlie/blog-static/2013/12/lovebiblepl.html)
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More Complex Systems
Office Routine

Chat

Coffee

Computer

Home

(lapan2018deep)

> Transition probabilities from
observation (count
transitions, normalize)

> What motivates transitions?
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Markov Reward Process
Where Transitions Come From

> Transition Probabilities: System Dynamic
> Transition Values: “Belohnung” for a transition
> Return of an episode:

Gt = γ0Rt+1 + γ1Rt+2 + γ2Rt+2 + · · · =
∞∑
k=0

γkRt+k+1 (6)

Gt Overall Return
Rt Reward for a transition at t
γ Discount Factor (counters infinite loop)
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Discount Factor γ
How far to look into the Future?

Gt = γ0Rt+1 + γ1Rt+2 + γ2Rt+2 + · · · =
∞∑
k=0

γkRt+k+1 (7)

> For each t: Calculate return as sum of following rewards Rt :

∞∑
k=0

γkRt+k+1 (8)

> In eq. (8) k →∞: Stopping condition?
> Multiplication with γ ∈ [0,9; 0,99]: Agent’s “foresight”
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Return, Reward, Value
What is a State worth?

> Reward from transition
> Return at the end of a chain of transitions
> How does an agent choose an action in st?

> Value: Expected return for a state

V (s) = E [G |St = s] (9)

> For each state s,
> is the value of this state, V (s),
> is the mean (alias expected) return
> that follows from the Markov Reward Process.

September 20, 2020 Motivation A Gentle Introduction, to Reinforcement Learning The Cross-Entropy Method The Bellman Principle of Optimality Applying the Bellman Principle of Optimality:, from Value Iteration, to Q Learning Deep Q Networks How to Proceed Further21



Return, Reward, Value
What is a State worth?

> Reward from transition
> Return at the end of a chain of transitions
> How does an agent choose an action in st?
> Value: Expected return for a state

V (s) = E [G |St = s] (9)

> For each state s,
> is the value of this state, V (s),
> is the mean (alias expected) return
> that follows from the Markov Reward Process.

September 20, 2020 Motivation A Gentle Introduction, to Reinforcement Learning The Cross-Entropy Method The Bellman Principle of Optimality Applying the Bellman Principle of Optimality:, from Value Iteration, to Q Learning Deep Q Networks How to Proceed Further21



Return, Reward, Value
What is a State worth?

> Reward from transition
> Return at the end of a chain of transitions
> How does an agent choose an action in st?
> Value: Expected return for a state

V (s) = E [G |St = s] (9)

> For each state s,

> is the value of this state, V (s),
> is the mean (alias expected) return
> that follows from the Markov Reward Process.

September 20, 2020 Motivation A Gentle Introduction, to Reinforcement Learning The Cross-Entropy Method The Bellman Principle of Optimality Applying the Bellman Principle of Optimality:, from Value Iteration, to Q Learning Deep Q Networks How to Proceed Further21



Return, Reward, Value
What is a State worth?

> Reward from transition
> Return at the end of a chain of transitions
> How does an agent choose an action in st?
> Value: Expected return for a state

V (s) = E [G |St = s] (9)

> For each state s,
> is the value of this state, V (s),

> is the mean (alias expected) return
> that follows from the Markov Reward Process.

September 20, 2020 Motivation A Gentle Introduction, to Reinforcement Learning The Cross-Entropy Method The Bellman Principle of Optimality Applying the Bellman Principle of Optimality:, from Value Iteration, to Q Learning Deep Q Networks How to Proceed Further21



Return, Reward, Value
What is a State worth?

> Reward from transition
> Return at the end of a chain of transitions
> How does an agent choose an action in st?
> Value: Expected return for a state

V (s) = E [G |St = s] (9)

> For each state s,
> is the value of this state, V (s),
> is the mean (alias expected) return

> that follows from the Markov Reward Process.

September 20, 2020 Motivation A Gentle Introduction, to Reinforcement Learning The Cross-Entropy Method The Bellman Principle of Optimality Applying the Bellman Principle of Optimality:, from Value Iteration, to Q Learning Deep Q Networks How to Proceed Further21



Return, Reward, Value
What is a State worth?

> Reward from transition
> Return at the end of a chain of transitions
> How does an agent choose an action in st?
> Value: Expected return for a state

V (s) = E [G |St = s] (9)

> For each state s,
> is the value of this state, V (s),
> is the mean (alias expected) return
> that follows from the Markov Reward Process.

September 20, 2020 Motivation A Gentle Introduction, to Reinforcement Learning The Cross-Entropy Method The Bellman Principle of Optimality Applying the Bellman Principle of Optimality:, from Value Iteration, to Q Learning Deep Q Networks How to Proceed Further21



Return, Reward, Value
An Example: The Dilbert Reward Process

> home → home : 1 (It’s good to be home.)
> home → coffee : 1 (Coffee first!)
> computer → computer : 5 (Hard work bears fruit.)
> computer → chat : −3 (Do not disturb!)
> chat → computer : 2 (Back to work.)
> computer → coffee : 1 (Coders are catalysts that turn coffee

into code.)
> coffee → computer : 3 (...)
> coffee → coffee : 1 (Good coffee needs time.)
> coffee → chat : 2 (Some chat at the coffee maker.)
> chat → coffee : 1 (Cup already empty?)
> chat → chat : −1 (Long conversations become boring fast.)
(lapan2018deep)
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Gewinn, Belohnung und Wert
Ein Beispiel: Der Dilbert Reward Process

Chat

Coffee

Computer

Home

p = 0.3; R = 2

p = 0.1; R = −3

p
=
0.2
;
R
=
1

p = 0.2; R = 2

p = 0.5
R = 5

p = 0.4; R = 1
p = 0.6
R = 1

p
=
0.2
;
R
=
3

p
=

0.
7;

R
=

2

p = 0.1
R = 1

p
=

0.2;
R

=
1

p = 0.5;
R = −1
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Return, Reward, Value
Values of States in the Dilbert Reward Process

With γ = 0:

> V (chat) = −1 · 0.5+ 2 · 0.3+ 1 · 0.2 = 0.3
> V (coffee) = 2 · 0.7+ 1 · 0.1+ 3 · 0.2 = 2.1
> V (home) = 1 · 0.6+ 1 · 0.4 = 1.0
> V (computer) = 5 · 0.5+ (−3) · 0.1+ 2 · 0.2 = 2.6

Most valuable state? Computer:
> computer → computer : common
> computer → computer : high reward
> computer → computer : seldom interrupted
Value for γ = 1? V (s) =∞!
> No Sink State
> V (s) > 0 ∀s
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Markov Decision Process
From Observation to Action

> Markov Process: States and transition probabilities (Markov
Chains)

> Markov Reward Process: MP plus value of a state
> ... and now for the decision?!

Right, that is still missing:
> Markov Decision Process: MRP plus Actions
> Action Space A (action space): set of actions

A = {a1, a2, . . . , an}
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Erweiterung der Transitionsmatrix
Vom Markov Reward Process zum Markov Decision
Process

Markov Reward Process

Next State

C
ur
re
nt

St
at
e

pij

Markov Decision Process

C
ur
re
nt

St
at
e

Target State

Ac
tio
n

pij |k
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Policy
Action Indicator

Markov Decision Process

C
ur
re
nt

St
at
e

Target State

Ac
tio
n

pij |k

> pij |k probability for i → j , if
k chosen as action

> k aus Policy:

π(a|s) = P [At = a|St = s]
(10)

> Formal: Probability
distribution over all actions
in a given state

> This definition includes
random actions during
exploration
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The Cross-Entropy Method
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Based on Sampling Theorem
Choosing an Action as Probability Distribution

Sampling Theorem:

Ex∼p(x)

[
H(x)

]
=

∫
x
p(x)H(x) dx (11)

H(x) Reward from a Policy Policy x ⇔ R(π(·))
p(x) Distribution over all possible policies

> Maximizing H(x) by searching all possible distributions (not
feasible)

> p(x) unknown (is the environment)
> Strategy: Iterative development of a distribution q(x) that

approximates p(x)
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Sampling with Distribution
Introducing q(x)

Sampling Theorem:

Ex∼p(x)

[
H(x)

]
=

∫
x
p(x)H(x) dx =

∫
x
q(x)

p(x)

q(x)
H(x) dx (12)

= Ex∼q(x)

[
p(x)

q(x)
H(x)

]
(13)

> In eq. (13) Substituting p(x)⇔ q(x)

> Goal: Optimization metric (approximation)
> Distance metric between two distributions Kullback Leibler

Divergence (KL)
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Kullback Leibler Divergence
Distance between p(x) and q(x)

KL
(
p1(x) ‖ p2(x)

)
= Ex∼p1(x) log

p1(x)

p2(x)
(14)

= Ex∼p1(x)

[
log p1(x)

]
︸ ︷︷ ︸

Entropy

−Ex∼p1(x)

[
log p2(x)

]
︸ ︷︷ ︸

Cross Entropy

(15)

> Alternative Names: Information Gain, relative Entropy
> Not symmetric: KL(p1(x) ‖ p2(x)) 6= KL(p2(x) ‖ p1(x)),

using sums instead: KL2(p1(x) ‖ p2(x)) =
KL2(p2(x) ‖ p1(x)) = KL(p1(x) ‖ p2(x)) + KL(p2(x) ‖ p1(x))
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Kullback Leibler Divergence
Distance between p(x) and q(x)

KL
(
p1(x) ‖ p2(x)

)
= Ex∼p1(x)

[
log p1(x)

]
− Ex∼p1(x)

[
log p2(x)

]
(16)

=

∫ ∞
−∞

p(x) (log p(x) − log q(x)) dx (17)
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Combining Sampling and KL
Iterative Approximation

Iteratively improving the approximation p(x)H(x):

qi+1(x) = argmin
qi+1(x)

−Ex∼qi (x)
p(x)

q(x)
H(x) log qi+1(x)

q0(x) = p(x) (18)

For Reinforcement Learning :

πi+1(a|s) = argmin
πi+1

−Ez∼πi (a|s)

[
R(z) ≥ ψi

]
log πi+1(a|s) (19)

> H(x)⇔
[
R(z) ≥ ψi

]
> Indicator Funktion

[
R(z) ≥ ψi

]
= 1 if reward above threshhold, 0

else
> No normalization — works still
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Cross Entropy Step-by-Step
In a Nutshell

procedure CrossEntropy(env, batchSize = 16, percentile = 70)
ann← GenerateRandomANN()
for batch ∈ PlayEpisodes(batchSize) do

obse , actse , rewse ← FilterElite(batch, percentile)
actScorese ← ann(obse)
loss ← CrossEntropy(actScorese , actse)
ann← Optimize(ann, loss)

end for
end procedure
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Influence of Episode Distribution
Pro and Con at the Same Time

Cartpole

Frozen Lake
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Overview CE
Strengths and Weaknesses of the Cross Entropy
Method

Pros

> Simplicity: Easy to understand,
implementations in 100 LoC
possible

> Good convergence for short
episodes with immediate
rewards

Cons

> Episodes must be finite and
short

> Episodes need high variance in
rewards

Optimizations:

> Bigger Batches (prolonges training)

> Discount Factor γ ∈ [0,9; 0,95] favors short episodes (easy to train)

> Hold Elite Episodes longer

> Reduce learning rate during ANN training (reduces speed of
convergence)
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The Bellman Principle of Optimality
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Value Revisited
Value of a State

Value of a State:

V (s) = E

[ ∞∑
t=0

γtRt

]
(20)

Example:

1 Start 2 End

3 End

1,0

2,0

> V (1)? Unknown without π
> Even here infinite states

> Always right:

V (1) = 1.0
> Always down: V (1) = 2.0
> pright = 0.5, pdown = 0.5:

V (1) =
1.0 · 0.5+ 2.0 · 0.5 = 1.5

> pright = 0.1, pdown = 0.9:
V (1) =
1.0 · 0.1+ 2.0 · 0.9 = 1.9

> And for more then 3
states. . . ?
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Value of a State
An abstract Look at V (s)

s0

s1 s2 s3 sn

a =
1 a = 2 a = 3

a = n

r = r1,V1 r = r2,V2 r = r3,V3 r = rn,Vn

> An action k :
V0(a = ak) = rk + γVk (21)

> Best action:
V0 = max

a∈1...n
(ra + γVa) (22)
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Value of a State
An abstract Look at V (s)

> Action 1:
V0(a = a1) = r1 + γV1 (23)

> Eine Handlung i , stochastisch:

V0(a = a1) = p1(r1+γV1)+p2(r2+γV2)+· · ·+pn(rn+γVn)
n∑

i=1

pi = 1,0 (24)

> Formal für eine beliebige Handlung a:

V0(a) = Es∼S

[
rs,a + γVs

]
=
∑
s∈S

pa,0→s(rs,a + γVs) (25)
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Bellman Principle of Optimality
Finding the Maximum Value of a State

Bellman Equation for deterministic case:

V0 = max
a∈1...n

(ra + γVa) (26)

Bellman Principle of Optimality:

V0 = max
a∈A

Es∼S

[
rs,a + γVs

]
= max

a∈A

∑
s∈S

pa,0→s(rs,a + γVs) (27)
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Bellman Principle of Optimality
Finding the Maximum Value of a State

V0 = max
a∈A

Es∼S

[
rs,a + γVs

]
= max

a∈A

∑
s∈S

pa,0→s(rs,a + γVs) (28)

> Defining a state’s value as the sum of. . .
> Rewards, r
> and Values V (s) of following states s ∈ S
> multiplied by transition probability p0 7→s

> given an action a ∈ A

> Applies to all V (s): Recursion
> In theory, best action obtainable by complete exploration of

the state-action-value space
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Recursion, Bellman, & Optimality
Solution to a very real Problem

1 Start 2

3

1,0

2,0

4
−20,0

> Ideal Strategy:

1→ 3 : r = 2
> Or not?! 1→ 3→ 4 : r = −18
> Value of a state depends on the

following states!
> Recursive definition covers all

following states (in theory).
> (Naive) Policy: For the current

state, evaluate all reachable states
and choose the action with the
biggest value r + V (s).
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Value of an Action
Value of an action a in State s

Qs,a = Es′∼S

[
rs,a + γVs′

]
=
∑
s′∈S

pa,s→s′(rs,aγVs′) (29)

> Expected immediate reward rs,a and discounted long-term
reward of the target state

Vs = max
a∈A

Qs,a (30)

> Value of a state s, V (s), is the value of the best possible
action executable in s: expressing V (s) via Qs,a

Q(s, a) = rs,a + γmax
a′∈A

Q(s ′, a′) (31)

> Applying the Bellman Principle to actions
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Applying the Bellman Principle of
Optimality:

from Value Iteration
to Q Learning
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Q Learning
Basis of a Big Family of Algorithms

Q(s, a) = rs,a + γmax
a′∈A

Q(s ′, a′) (32)

A simple Example:

s0

s1
s2

s3

s4

s0: Initial State
s1, s2, s3, s4: Final States
p = 1

3 per action for slipping left/right
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Q Learning
Basis of a Big Family of Algorithms

s0

s1

s2 s4

s3

p = 1
3

p = 1
3 p = 1

3

p = 1
3 p = 1

3

p = 1
3

p = 1
3 p = 1

3

Q(s, a) = rs,a + γmax
a′∈A

Q(s ′, a′)

(33)

> Q(s,a) = 0 ∀s ∈ {1, 2, 3, 4}
> Q(s0, up) = 1

3V1 +
1
3V2 +

1
3V4 = 1

31+
1
32+

1
34 = 2.31

> Q(s0, left) = . . . = 1.98
> Q(s0, right) = . . . = 2.64
> Q(s0, down) = . . . = 2.97
> V (s0) = maxa∈A Q(s0, a) =

Q(s0, down) = 2.97
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Q Learning
Q Value the Action Indicator

s0

s1

s2 s4

s3

p = 1
3

p = 1
3 p = 1

3

p = 1
3 p = 1

3

p = 1
3

p = 1
3 p = 1

3

Q(s1, a) 0
Q(s2, a) 0
Q(s3, a) 0
Q(s4, a) 0
Q(s0, up) 2.31
Q(s0, left) 1.98
Q(s0, right) 2.64
Q(s0, down) 2.97

Q(s, a) = rs,a + γmax
a′∈A

Q(s ′, a′) (34)

> Q better suited than V for selecting
actions (value of an action, not value of a
state)

> V computable from Q

> Missing: method for calculating Q/V
(without knowing all transitions!)
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Value Iteration
A naïve Approach to Q Learning

s1 s2

r = 2

r = 1

With γ = 0,9:

10 0.910 ≈ 0.348
50 0.950 ≈ 0.00515
100 0.9100 ≈ 0.0000265

r = [1, 2, 1, 2, 1, . . . ]

V (s1) = 1+ γ(2+ γ(1+ γ(2+ . . .)))

=
∞∑
i=0

1γ22i + 2γ2i+1

V (s2) = 2+ γ(1+ γ(2+ γ(1+ . . .)))

=
∞∑
i=0

2γ22i + 1γ2i+1
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Value Iteration
Algorithm in a Nutshell

procedure ValueIteration(env)
Q ← [0] . ∀s, a
for all s ∈ S , a ∈ s do

Qs,a ←
∑

s′ pa,s→s′(rs,a + γmaxa′ Qs′,a′) . Bellman
Update

end for
return Q

end procedure

> State space must be discrete
> . . . and small enough!
> Transition probabilities from observations (s0, s1, a)
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Value Iteration
Algorithm in a Nutshell

procedure ValueIteration(env)
Q ← [0] . ∀s, a
for all s ∈ S , a ∈ s do

Qs,a ←
∑

s′ pa,s→s′(rs,a + γmaxa′ Qs′,a′) . Bellman
Update

end for
return Q

end procedure

> State space must be discrete
> . . . and small enough!
> Transition probabilities from observations (s0, s1, a)
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Deep Q Networks
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Motivation
Capacity & Compute Power needed for Value Iteration

> Saving (s, a, r , s ′)

> Assumption: every value
theoretically known and
iterable

> Back-of-napkin calculation:
8.5 billion floating point
numbers in in 32GB RAM

(1, 1)(0, 1)

(0, 2)

(0, 0) (1, 0) (2, 0)

(2, 1)

(2, 2)(1, 2)

(3, 0)

(3, 2)

(Wand)
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Motivation
Capacity & Compute Power needed for Value Iteration

> Atari 2600 (Benchmark for
DRL): 210× 160 = 33600
pixels, 128 colors

> Each frame:
12833600 ≈ 1070802 pictures
(states!)

> 99(,9?)% of all iterations
nonsensible

> Space Invaders & Co not
discrete
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Motivation
Capacity & Compute Power needed for Value Iteration

> Power grid mixed
discrete/continuous (tap
changer vs. generator
scaling)

> State space in
quasi-stationary calculations
already complex (loat flow
calculations, state
estimation, . . . )
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Tabular Q Learning
Optimizing Value Iteration

procedure TabularLearning(env , γ, α)
Q ← [], R ← 0, εe ← 1,0
repeat

s ← Read(env)
if s /∈ Q ∨ random() < εe then . Exploration vs. Exploitation

a← RandomChoice(A)
εe ← εe − 0,02

else
a← maxa∈A Qs

end if
s ′, rs,a ← Act(env , a)
Qs,a ← (1− α)Qs,a + α(r + γmaxa′∈AQs′,a′) . Bellman
R ′ ← R
R ← R + γrs,a

until |R − R ′| < εR
return Q

end procedure
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Coping with Equivariance
Representing Q as Matrix not Efficient Enough

Äquivalent Patterns

> Difference—wrt actions—between both states?

> None!
> But separate entry in Qs,a: Regression Problem
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Coping with Equivariance
Representing Q as Matrix not Efficient Enough

> Difference—wrt actions—between both states?

> None!
> But separate entry in Qs,a: Regression Problem
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Coping with Equivariance
Representing Q as Matrix not Efficient Enough

> Difference—wrt actions—between both states?
> None!
> But separate entry in Qs,a: Regression Problem
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Deep Q Learning
Non-Linear Representation for Q

> Regression Problem: non-linear mapping f : (s, a) 7→ Q

> f : Artificial Neural Network
> Adapting the algorithm:

1. Init Q(s, a) with potentially random approximaiton
2. (s, a, r , s ′) = Act(env , a)
3. Calculate error:

L =

{
(Qs,a − r)2 at the end of episode,
(Qs,a − (r + γmaxa′∈A Qs′,a′))

2 during the episode.
(35)

4. Change Q(s,a) with gradient descent algorithm (Stochastic
Gradient Descent, SGD)

5. Repeat from (2) until convergence
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Independent and Identically Dis-
tributed. . . ?
Base Assumption of SGD a Problem

> Base for Deep Q Learning borrowed from supervised Deep
Learning:

> Assumption of SGD: i.i.d
> Neither nor at DRL

1. Independent: (s, a, r , s ′) not independent, obviously
2. Indentically: training data (exploration) differs from optimal

policy (exploitation): (exploration vs. exploitation)
> Solution: Replay Buffer

> Ring buffer
> fixed size
> more or less i.i.d., but still “fresh enough”
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Correlation between Steps
Achilles’ Heel of the Bellman Principle

Qs,a = r + γmax
a′∈A

Qs′,a′ (36)

> Deriving Qs,a via Qs′,a′ : Bootstrapping
> s and s ′ differ in just one step
> Update of Q(s, a) influences Q(s ′, a′): Training unstable

(After updating Q(s, a), Q(s ′, a′) becomes worse if immediately
explored; next update worsens, etc. ad infinitum)

> Target Network: copy of Policy Network for Qs′,a′ ; sync every N
steps

> N a hyper parameter N = [1,000; 10,000]
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Partially Observable Markov Decision
Process

> How fast do the invaders move?

> Markov Decision Process dictates
that state is completely derivable
from one observation

> In RL not always possbile:
Partially Observable Markov
Decision Process, POMDP

> Hack: Merge k observations (e.g.,
k = 4 frames in ATARI)
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Partially Observable Markov Decision
Process

> How fast do the invaders move?
> Markov Decision Process dictates

that state is completely derivable
from one observation

> In RL not always possbile:
Partially Observable Markov
Decision Process, POMDP

> Hack: Merge k observations (e.g.,
k = 4 frames in ATARI)
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DQN Training I
Final Form

procedure DqnLearning(env , γ, α,N)
Q ← RandomWeights(), Q̂← RandomWeights()
replayBuffer ← []
ε← 1,0, n← 0
repeat

a←

{
RandomChoice(A) if Random() < ε

argmaxa Qs,a else
ε← ε− 0,02
(s ′, r)← Act(env , a)
replayBuffer ← replayBuffer ∪ (s, a, r , s ′)
minibatch← RandomSample(replayBuffer)
for all step = (s, a, r , s ′) ∈ minibatch do

y =

{
r if EpisodeEnd(minibatch)
r + γmaxa′∈A Q̂s′,a′ else
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DQN Training II
Final Form

L = (Qs,a − y)2

Q ← SGD(Q, y)
n← n + 1
if n = N then

Q̂ ← Q
n← 0

end if
end for

until HasConverged()
return Q

end procedure
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How to Proceed Further
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Deep Q Learning is Only the Beginning
A Wrapup: What we Should Do Now

> DQN + Extensions (Rainbow Paper) very handy
> But suffers from the curse of dimensionality
> “Status Quo” for Power Systems: DQN, DDPG
> Still a long way in the power systems community until

AlphaZero is applied
> Power Systems benchmark missing
> Framework for multi-agent in power systems missing
> Want to help? Drop a note: eric.veith@offis.de
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