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Motivation |
Why more Al in the Power Grid? OFFIS

> Power prid operations increase in complexity

> More DERs
> New market concepts, e.g., local markets
> Anciallary services also from DERs, also market-based

> Al technologies already widespread

> Forecasting
> Multi-Agent Systems (mostly rule-based)
> Distributed heuristics (e.g., schedule planning)

> Resilience: Reaction for the “unknown unknowns”

> Bottom line: Dynamic strategy development needed; Deep
Reinforcement Learning (DRL) is the next meta-level
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OFFIS

A Gentle Introduction
to Reinforcement Learning
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About Reinforcement Learning
DRL in Relation to other Terms in Deep Learning

> Model-based Learning: ANN
develops problem model (vs.
Instance-based Learning)

> Supervised Learning

> Classification
> Regression

> Unsupervised Learning
> Clustering

> Reinforcement Learning
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2 About Reinforcement Learning |
I DRL in Relation to other Terms in Deep Learning UFFls

> Model-based Learning: ANN /E:;ttzrrgss

develops problem model (vs.
Instance-based Learning) - -
> Supervised Learning
= ?
> Classification ‘ y =10’ ‘

> Unsupervised Learning

> Clustering Values
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> Reinforcement Learning

September 20, 2020 4



About Reinforcement Learning |
DRL in Relation to other Terms in Deep Learning OFFIS
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> Model-based Learning: ANN
develops problem model (vs
Instance-based Learning)
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> Classification i @ \@
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> Unsupervised Learning ¢
> Clustering

> Reinforcement Learning m
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About Reinforcement Learning |
DRL in Relation to other Terms in Deep Learning OFFIS
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About Reinforcement Learning |
DRL in Relation to other Terms in Deep Learning OFFIS

> Model-based Learning: ANN ® - °
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2 About Reinforcement Learning |
I DRL in Relation to other Terms in Deep Learning OFFls

> Model-based Learning: ANN Agent

Ob ti 1 i
develops problem model (vs. servation | @%ﬂ

Instance-based Learning)
> Supervised Learning
> Classification

> Regression
> Unsupervised Learning A -
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Reward

> Reinforcement Learning
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About Reinforcement Learning |
DRL in Relation to other Terms in Deep Learning OFFIS
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Machine Artificial

Learning Intelligence
(ML) (AD)

September 20, 2020



2 About Reinforcement Learning |
I DRL in Relation to other Terms in Deep Learning OFFls

Computer Science

Engineering achite Neuroscience
earning
Optima leward
ontrol Systel
sical/O| n
Re: itionin
Mathematics Rationality Psychology
—
b
o
=
n
=l
E i c>v
conomics
&)
=

September 20, 2020



Basic Terminology
Agent, Sensors, Actuators

September 20, 2020
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Agent: Acting Entity
Through Sensors, the Agent
perceives its environment

.. which it acts upon with its
Actuators.



Basic Terminology

Agent, Sensors, Actuators: An Example OFFIS
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Agent: Mouse
Sensors: Board (encoding?)

Actuators: Forward,
backward, turn £90°
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Agent: Vacuum bot

Sensoren: Area immediately
in front of the bot
> Encoding:
dirty € {yes, no}

Actuators: Forward,
backward, turn £90°



Basic Terminology
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Agent, Sensors, Actuators: An Example
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> Sensoren: Area immediately

in front of the bot
> Encoding:
dirty € {yes, no}
> Local vs. global

> Actuators: Forward
backward, turn £90
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Basic Terminology

OFF

Agent, Sensors, Actuators: An Example
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> Sensoren: Area immediately

in front of the bot
> Encoding:
dirty € {yes, no}
> Local vs. global
> Sensors noisy?
> Actuators: Forward
backward, turn £90
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Basic Terminology |
OFFIS

Agent, Sensors, Actuators: An Example

4 )
A el Bl > Agent: Vacuum bot
: St el > Sensoren: Area immediately
(1.2) 2 2) in front of the bot
> Encoding:
D) dirty € {yes, no}
= > Local vs. global
’ @1 > Sensors noisy?
: > Actuators: Forward,
backward, turn +90°

> Slippage?
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Reward
Feedback for the Agent
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> What route do mouse and bot take?
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Reward
Feedback for the Agent

T
1

H—|irr :
] — |_‘ ©1) (1)
_J I_I_ - J """"""""

B — . (0,0) (1,0)

> What route do mouse and bot take?

> ...or, even more interisting: Why do mouse/bot take a
particular route?
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Reward |
Feedback to the Agent OFFIS

> Reward: Feedback from the environment about the agent’s
action regarding the agent'’s goal

> “Reward reinforces the agent to do the right thing.”

> Scalar: Unitless, no futher form — big, small, positive,
negative, ...

> No requirements to frequency; most common: per fixed t, per
action

> Local: Rewards the immediate action

> Training based on reward (directly or indirectly)
Problem: associating actions and rewards (e.g., bank robbery:
high immediate reward, long-term: not so good)

September 20, 2020 11



Examples for Reward Values |

OFFIS

Stock Trading Profits/Losses
Chess Values of a chess piece, value of a position, result of a
game (ELO; or simply win: +1, draw: 0, loss: -1)
Dopamine Level Biological reward: Joy
Vacuum Bot Fill state of the dust tank
Arcade +1 for every frame survived, +1 for every enemy
overcome, ...

Web Crawler Information gain
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Examples for Reward Values |

OFFIS

Stock Trading Profits/Losses
Chess Values of a chess piece, value of a position, result of a
game (ELO; or simply win: +1, draw: 0, loss: -1)
Dopamine Level Biological reward: Joy
Vacuum Bot Fill state of the dust tank
Arcade +1 for every frame survived, +1 for every enemy
overcome, ...
Web Crawler Information gain
Power Grid Voltage band
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Examples for Reward Values |

OFFIS

Stock Trading Profits/Losses
Chess Values of a chess piece, value of a position, result of a

game (ELO; or simply win: +1, draw: 0, loss: -1)

Dopamine Level Biological reward: Joy

Vacuum Bot Fill state of the dust tank

Arcade +1 for every frame survived, +1 for every enemy

overcome, ...

Web Crawler Information gain

Power Grid Voltage band, CO,
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Examples for Reward Values |

OFFIS

Stock Trading Profits/Losses
Chess Values of a chess piece, value of a position, result of a

game (ELO; or simply win: +1, draw: 0, loss: -1)

Dopamine Level Biological reward: Joy

Vacuum Bot Fill state of the dust tank

Arcade +1 for every frame survived, +1 for every enemy

overcome, ...

Web Crawler Information gain

Power Grid Voltage band, CO,, MW from DER
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Examples for Reward Values |

OFFIS

Stock Trading Profits/Losses
Chess Values of a chess piece, value of a position, result of a

game (ELO; or simply win: +1, draw: 0, loss: -1)

Dopamine Level Biological reward: Joy

Vacuum Bot Fill state of the dust tank

Arcade +1 for every frame survived, +1 for every enemy

overcome, ...

Web Crawler Information gain

Power Grid Voltage band, CO,, MW from DER, line losses
avoided
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Examples for Reward Values |

OFFIS

Stock Trading Profits/Losses

Chess Values of a chess piece, value of a position, result of a
game (ELO; or simply win: +1, draw: 0, loss: -1)

Dopamine Level Biological reward: Joy
Vacuum Bot Fill state of the dust tank

Arcade +1 for every frame survived, +1 for every enemy
overcome, ...

Web Crawler Information gain
Power Grid Voltage band, CO,, MW from DER, line losses
avoided , rel. self-supply, ...
Caution Agent maximizes reward — not always the same as

succeeding at an objective
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Markov Process

Model for Observable Systems OFFIS

> System with N states
> State Space

S = {51,52,...,SN}
> Markov Property: Chain without memory

> Let Y = (X;)ten be a space of random numbers, X; € S
> Y is a markov chain, iff:

P(Xt-‘rl = Sjria ‘ Xt = Sjt’Xf—l = Sje_ay - ’XO = Sjo)
= P(Xt+1 = Sjiia ‘ X = er)

> Transition Probabilities:
pii(t) == PXex1 =5 | Xe =si), ij=1,....m
> Transitions Matrix:
M(t) = (pjj(t))s.ses: M| =N x N
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Weather Prediction I

A simple Markov Process OFFIS

> States: sunny or rainy: S = {s, r}
> History: [s,s,s,r,s,...]
> Probabilities calculated from history: M:

0.1

S r
s 08 0.2 o,s(j@\/:@:)o,g
r 0.1 0.9

0,2
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S Markov Chains | |
| Fun with s OFFIS

use
use
use
use
use

strict;

warnings;

Algorithm: :MarkovChain;

Path::Class;

autodie; # die if problem reading or writing a file

my Q@inputs = qw(king_james_bible.txt lovecraft_complete.txt);
my $dir = dir(".");

my $f = nu;

my @symbols = ();

foreach $f (@inputs) {

my $file = $dir->file($f);

my $lcounter = 0;

my $wcounter = 0;

my $file_handle = $file->openr();

while( my $line $file_handle->getline() ) {

September 20, 2020 15



2 Markov Chains Il |
| Fun with s OFFIS

chomp ($line);
my @words = split(' ', $line);
push(@symbols, Q@words);
$lcounter++;
$wcounter += scalar (@words) ;
}
print "$lcounter lines, $wcounter words read from $f\n";
}
my $chain = Algorithm::MarkovChain::->new();
$chain->seed(symbols => \@symbols, longest => 6);
print "About to spew ...\n";
print "———\n\n"'
foreach (1 .. 20) {
my @newness = $chain->spew(length  => 40,
complete => [ qw( the ) 1);
print join (" ", G@newness), ".\n\n";

September 20, 2020 16



Markov Chains Il l
Fun with texts OFFIS

$ ./lovebible.pl 2> /dev/null

99820 lines, 821134 words read from king_ james_bible.txt
16536 lines, 775603 words read from lovecraft_complete.txt
About to spew ...

the backwoods folk -had glimpsed the battered mantel,
rickety furniture, and ragged draperies. It spread

— over it a

robber, a shedder of blood, when I listened with mad
intentness. At last you know!At last to come to see
— me. Now

Absalom.

(Charlie Stross — http:
//www.antipope.org/charlie/blog-static/2013/12/1lovebiblepl.html)

September 20, 2020 17
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More Complex Systems |

Office Routine OFFIS

> Transition probabilities from
- observation (count
transitions, normalize)
' What motivates transitions?

(lapan2018deep)

\Y
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Markov Reward Process I
Where Transitions Come From OFFIS

> Transition Probabilities: System Dynamic
> Transition Values: “Belohnung” for a transition

> Return of an episode:
oo
Gt =1 Rer1 + 7' Repa + YRz + - = > _ Y Regusr (6)
k=0

G; Overall Return
R: Reward for a transition at t
~ Discount Factor (counters infinite loop)

September 20, 2020 19



Discount Factor vy |
How far to look into the Future? OFFIS

o0
G = ’YORt+1 + ’YlRt+2 + ’Yth-s-z +--= Z”ykRHkJrl (7)
k=0

> For each t: Calculate return as sum of following rewards R;:
[e.e]
k
Z’Y Retit1 (8)
k=0

> In eq. (8) k — oo: Stopping condition?
> Multiplication with v € [0,9;0,99]: Agent's “foresight”

September 20, 2020 20



Return, Reward, Value I

What is a State worth? OFFIS

> Reward from transition
> Return at the end of a chain of transitions

> How does an agent choose an action in s;7

September 20, 2020 21



Return, Reward, Value I

What is a State worth? OFFIS

Reward from transition
Return at the end of a chain of transitions

How does an agent choose an action in s;7

vV V V V

Value: Expected return for a state

V(s) =E[G[S: = 5] (9)
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Return, Reward, Value I

What is a State worth? OFFIS

Reward from transition
Return at the end of a chain of transitions

How does an agent choose an action in s;7

vV V V V

Value: Expected return for a state

V(s) =E[G[S: = 5] (9)

> For each state s,
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Return, Reward, Value I

What is a State worth? OFFIS

Reward from transition
Return at the end of a chain of transitions

How does an agent choose an action in s;7

vV V V V

Value: Expected return for a state

V(s) =E[G[S: = 5] (9)

> For each state s,
> is the value of this state, V/(s),
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Return, Reward, Value I

What is a State worth? OFFIS

Reward from transition
Return at the end of a chain of transitions

How does an agent choose an action in s;7

vV V V V

Value: Expected return for a state

V(s) =E[G[S: = 5] (9)

> For each state s,
> is the value of this state, V/(s),
> is the mean (alias expected) return
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Return, Reward, Value I

What is a State worth? OFFIS

Reward from transition
Return at the end of a chain of transitions

How does an agent choose an action in s;7

vV V V V

Value: Expected return for a state
V(s) =E[G|S: = 5] (9)
> For each state s,
> is the value of this state, V/(s),
>
>

is the mean (alias expected) return
that follows from the Markov Reward Process.
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Return, Reward, Value I

An Example: The Dilbert Reward Process

V V VYV VYV

vV V V V

>

home — home : 1 (It's good to be home.)

home — coffee : 1 (Coffee first!)

computer — computer : 5 (Hard work bears fruit.)
computer — chat : —3 (Do not disturb!)

chat — computer : 2 (Back to work.)

computer — coffee : 1 (Coders are catalysts that turn coffee
into code.)

coffee — computer : 3 (...)

coffee — coffee : 1 (Good coffee needs time.)

coffee — chat : 2 (Some chat at the coffee maker.)

chat — coffee : 1 (Cup already empty?)

chat — chat : —1 (Long conversations become boring fast.)

Oapan2018deep)

September 20, 2020

OFFIS
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Gewinn, Belohnung und Wert
Ein Beispiel: Der Dilbert Reward Process

September 20, 2020
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Return, Reward, Value I

Values of States in the Dilbert Reward Process OFFIS
With v =

> V(chat)=-1-05+2-03+1-02=0.3

> V(coffee) =2-0.7+1-0.14+3-02=21

> V(home)=1-06+1-04=1.0

> V(computer) =5-05+(—3)-01+2-02=2.56

September 20, 2020 24



Return, Reward, Value I

Values of States in the Dilbert Reward Process OFFIS
With ~ = 0:
> chat)=-1-05+2-03+1-02=0.3

V(
> V(coffee) =2-0.7+1-0.14+3-02=21
> V(home)=1-06+1-0.4=1.0

> V(computer) =5-05+(—3)-01+2-02=2.6

Most valuable state?
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Return, Reward, Value I

Values of States in the Dilbert Reward Process OFFIS
With ~ = 0:
> chat)=-1-05+2-03+1-02=0.3

V(
> V(coffee) =2-0.7+1-0.14+3-02=21
> V(home)=1-0.6+1-04=1.0

> V(computer) =5-05+(—3)-0.1+2-0.2=2.6
Most valuable state? Computer:

> computer — computer: common

> computer — computer: high reward

> computer — computer: seldom interrupted
Value for v =17
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Return, Reward, Value I

Values of States in the Dilbert Reward Process OFFIS
With ~ = 0:
> chat)=-1-05+2-03+1-02=0.3

V(
> V(coffee)=2-07+1-01+3-02=21
> V(home)=1-0.6+1-04=1.0

> V(computer) =5-05+(—3)-0.1+2-0.2=2.6
Most valuable state? Computer:

> computer — computer: common

> computer — computer: high reward

> computer — computer: seldom interrupted
Value for v =17 V(s) = 0!

> No Sink State

> V(s)>0Vs

September 20, 2020 24



Markov Decision Process I

From Observation to Action OFFIS

> Markov Process: States and transition probabilities (Markov
Chains)

> Markov Reward Process: MP plus value of a state

> ... and now for the decision?!
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Markov Decision Process I

From Observation to Action OFFIS

Markov Process: States and transition probabilities (Markov
Chains)

Markov Reward Process: MP plus value of a state

V

. and now for the decision?! Right, that is still missing:

Markov Decision Process: MRP plus Actions

VvV V V V

Action Space A (action space): set of actions
A={a,a,...,an}

September 20, 2020 25



Erweiterung der Transitionsmatrix |
Vom Markov Reward Process zum Markov Decision OFFIS
Process

Markov Reward Process Markov Decision Process
S
Next State 9
?s

3 3
3 3
n %)
+ o+
5 5
g < pijl k
=} >
O O

Target State
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Policy

Action Indicator

Markov Decision Process

Q

-0
N
&

v

pijlk

Current State

Target State

September 20, 2020

|
OFFIS

pij| k probability for i — j, if
k chosen as action

k aus Policy:

m(als) = P[A: = a|S; = 5]

(10)
Formal: Probability
distribution over all actions
in a given state

This definition includes
random actions during
exploration

27
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The Cross-Entropy Method

OFFIS
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Based on Sampling Theorem |
Choosing an Action as Probability Distribution OFFIS

Sampling Theorem:
Boepio) [ HO)| = [ M) d (11)

H(x) Reward from a Policy Policy x < R(m(-))

p(x) Distribution over all possible policies

> Maximizing H(x) by searching all possible distributions (not
feasible)
> p(x) unknown (is the environment)

> Strategy: Iterative development of a distribution g(x) that
approximates p(x)

September 20, 2020 29



Sampling with Distribution |

Introducing q(x) OFFIS

Sampling Theorem:

> In eq. (13) Substituting p(x) < q(x)
Goal: Optimization metric (approximation)

V

> Distance metric between two distributions Kullback Leibler
Divergence (KL)

September 20, 2020 30



Kullback Leibler Divergence |
Distance between p(x) and g(x) OFFIS

p1(x)
p2(x)

= Expy(x) [ log Pl(X)} —Exmpi(x) [ log Pz(X)}

KL(pl(X) H p2(X)) = IE><~p1(><) log

Entropy Cross Entropy

(15)

> Alternative Names: Information Gain, relative Entropy

> Not symmetric: KL(p1(x) || p2(x)) # KL(p2(x) || p1(x)),
using sums instead: KLz(p1(x) || p2(x)) =

KLa(p2(x) || p1(x)) = KL(p1(x) [| p2(x)) + KL(p2(x) || p1(x))

September 20, 2020 31



2 Kullback Leibler Divergence |
I Distance between p(x) and g(x) OFFIS

KL(p1(x) || P2(x)) = Expu) [ 108 21(X)] = Epa| l0g P2(¥)]
(16)

= /_00 p(x) (log p(x)  —logq(x))dx (17)

\ Dy (Pl0)
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Combining Sampling and KL I
Iterative Approximation OFFIS

Iteratively improving the approximation p(x)H(x):

gi+1(x) = arg min —Equl.(x)gEi;H(x) log git+1(x)

qi+1(x)
For Reinforcement Learning:

miv1(als) = argmin —E, 7, (a/s) {R(Z) > w,} log mit1(als) (19)
Tit+1
> Hx) e [R(z) > zp,}
> Indicator Funktion [R(z) > w,} =1 if reward above threshhold, 0

else

> No normalization — works still
September 20, 2020 33



Cross Entropy Step-by-Step |
In a Nutshell OFFIS

procedure CrossEntropy(env, batchSize = 16, percentile = 70)
ann <— GenerateRandomANN()
for batch € PlayEpisodes(batchSize) do
obs., acts., rews. « FilterElite(batch, percentile)
actScores. < ann(obs.)
loss <— CrossEntropy(actScores., acts.)
ann <— Optimize(ann, loss)
end for
end procedure

September 20, 2020 34



Influence of Episode Distribution |
Pro and Con at the Same Time UFFlS

Cartpole

loss reward_bound reward_mean
0680 180 180
0640 140 140
0600 [ 100 100
0560 [ 60.0 60.0
0520 [ 200 200
0000 1000 2000 3000 40.00 0000 1000 2000 3000  40.00 0000 1000 2000 3000 4000
Frozen Lake
loss reward_bound reward_mean
0.800
120 oo 0.160
s 0.120
L I (——(—— - 0.0800
0.400 -0.400 0.0400 M ‘ I III
0.00 -0.800 0.00
0000 2000 4000  600.0 0.000 2000 4000 6000 0000 2000 4000 6000
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i Influence of Episode Distribution

Pro and Con at the Same Time

Cartpole

1 elite episodes
>

1111111 r=7
1111 s=4
11 y=2
""" reward
Frozen Lake

fre 70% percentile=0
0000001 g=1 °P
0000000O00O z=0
0001 T=1

0 1 reward

September 20, 2020
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Overview CE |
Strengths and Weaknesses of the Cross Entropy OFFIS
Method

Pros Cons
> Simplicity: Easy to understand, > Episodes must be finite and
implementations in 100 LoC short
ibl . . . .

possible > Episodes need high variance in

> Good convergence for short rewards
episodes with immediate
rewards

Optimizations:

> Bigger Batches (prolonges training)

> Discount Factor v € [0,9;0,95] favors short episodes (easy to train)
> Hold Elite Episodes longer
>

Reduce learning rate during ANN training (reduces speed of
convergence)
September 20, 2020 36



OFFIS

The Bellman Principle of Optimality
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Value Revisited I

Value of a State OFFIS

Value of a State:

V(s)=E thRt] (20)
t=0
Example:
1,0 > V/(1)?7 Unknown without 7
" Start > Even here infinite states
> Always right:
2,0

3 End
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Value Revisited
Value of a State

Value of a State:

V(s)=E
Example:
1,0
! Start
2,0

3 End

September 20, 2020

Z vth] (20)
t=0

> V(1)? Unknown without 7
> Even here infinite states
> Always right: V(1) =1.0
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Value Revisited I

Value of a State OFFIS

Value of a State:

V(is)=E > vth] (20)
t=0
Example:
1,0 > V/(1)?7 Unknown without 7
1 2 :
Start > Even here infinite states

> Always right: V(1) =1.0
2,0 > Always down:

3 End
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Value Revisited I

Value of a State OFFIS

Value of a State:

V(is)=E > vth] (20)
t=0
Example:
1,0 > V/(1)?7 Unknown without 7
1 2 :
Start > Even here infinite states

> Always right: V(1) =1.0
2,0 > Always down: V(1) =20

3 End

September 20, 2020 38




Value Revisited

Value of a State

1,0
1 Start

2,0

3 End

September 20, 2020

|
OFFIS

> V(1)? Unknown without 7
> Even here infinite states
> Always right: V(1) =1.0
> Always down: V(1) =2.0
> Pright = 0.5, Pdown = 0.5:

38



Value Revisited I

Value of a State OFFIS

1,0 _
1 Gtart > V(1)? Unknown without 7

> Even here infinite states
> Always right: V(1) =1.0

2,0 > Always down: V(1) =2.0
> Pright = 051 Pdown = 0.5:
V(1) =

3 End 1.0-0.5+2.0-05=15
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Value Revisited I

Value of a State OFFIS

1,0 i
) > V(1)? Unknown without 7
1 2
Start > Even here infinite states
> Always right: V(1) =1.0
2,0 > Always down: V(1) =2.0
> Pright = 051 Pdown = 0.5:
V(1) =

3 End § 1.0-0.5+2.0-05=15

Pright = 011 Pdown = 0.9:
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Value Revisited I

Value of a State OFFIS

1,0 _
1 Gtart > V(1)? Unknown without 7

> Even here infinite states
> Always right: V(1) =1.0

2,0 > Always down: V(1) =2.0
> Pright = 051 Pdown = 0.5:
V(1) =

3 End 1.0-0.5+2.0-05=15

> Pright = 01, Pdown = 0.9:
V(1) =
1.0-0.14+20-09=19
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Value Revisited I

Value of a State OFFIS

1,0 _
1 Gtart > V(1)? Unknown without 7

> Even here infinite states
> Always right: V(1) =1.0

2,0 > Always down: V(1) =2.0
> Pright = 051 Pdown = 0.5:
V(1) =

3 End 1.0-0.5+2.0-05=15

> Pright = 01, Pdown = 0.9:
V(1) =
1.0-0.14+20-09=19
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Value Revisited I

Value of a State OFFIS

1,0

1 > > V/(1)?7 Unknown without 7
Start e
> Even here infinite states
> Always right: V(1) =1.0
2,0 > Always down: V(1) =2.0
> Pright = 051 Pdown = 0.5:
V(1) =

3 End 1.0-0.5+2.0-05=15

> Pright = 01, Pdown = 0.9:
V(1) =
1.0-01+20-09=19

> And for more then 3
states...?
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Value of a State I

An abstract Look at V/(s) OFFIS

OMGEN RS

r=rn,Vi r=nW r=nr,Vz3 r=rnr,V,

> An action k:

Vo(a = ak) = re + v Vi (21)
> Best action:
Vo = _max (ra+~Va) (22)
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Value of a State I

An abstract Look at V/(s) OFFIS

> Action 1:
Wa=a1)=n+vV1 (23)

> Eine Handlung /, stochastisch:
Vo(a = a1) = pr(n+7V1)+p2(re+vyV2)+- -+ pa(ra+vVa)
n
> pi=10 (24)
i=1
> Formal fiir eine beliebige Handlung a:

VO(a) = Es-s [rs,a + ’sz] = Z Pa,0—>s(rs,a + 'sz) (25)
seS
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Bellman Principle of Optimality |
Finding the Maximum Value of a State OFFIS

Bellman Equation for deterministic case:

Vo = max (ra+~Va) (26)

Bellman Principle of Optimality:

Vo = r;nealz\( E..s [rs’a + 'st] = Tea,t)\( ZG; Pao—s(rsa+7Vs) (27)
S
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Bellman Principle of Optimality |
Finding the Maximum Value of a State OFFIS

Vo = Tea}\( Ess [rs,a + ’sz] = Teaz‘( ; pa,O—)s(rs,a + 7\/5) (28)
s

> Defining a state’s value as the sum of. ..

> Rewards, r

> and Values V(s) of following states s € §
> multiplied by transition probability pos
> given an actionac A

> Applies to all V(s): Recursion

> In theory, best action obtainable by complete exploration of
the state-action-value space
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Recursion, Bellman, & Optimality
Solution to a very real Problem

> ldeal Strategy:
1,0

1 Start

2,0

]

September 20, 2020

OFFIS
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Solution to a very real Problem

>
1,0

1 Start

2,0

]
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OFFIS

Ideal Strategy: 1 —3:r =2
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Recursion, Bellman, & Optimality I

Solution to a very real Problem OFFIS

> Ideal Strategy: 1 —3:r=2
1.0 Ornot?l 1 -3 —4:r=-18

1 Start > Value of a state depends on the
following states!

V

20 > Recursive definition covers all
) . .
following states (in theory).
—20,0 > (Naive) Policy: For the current
3 state, evaluate all reachable states

and choose the action with the
biggest value r + V/(s).
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Value of an Action I

Value of an action a in State s OFFIS

Qs,a =Eg-s [rs,a + ’YVS/:| = Z Pa7s—>s’(rs,a’7 Vs’) (29)
s'eS

> Expected immediate reward r; , and discounted long-term
reward of the target state

Vs = max Qs 5 (30)
acA

> Value of a state s, V(s), is the value of the best possible
action executable in s: expressing V(s) via Qs ,

Q(s,a) = rs o +ymax Q(s', d) (31)
a'cA

> Applying the Bellman Principle to actions
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OFFIS

Applying the Bellman Principle of
Optimality:
from Value Iteration
to Q Learning
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Q Learning

Basis of a Big Family of Algorithms

A simple Example:

Q(s,a) = rsa +ymax Q(s', d)
aceA

E

54‘

so: Initial State

S1, 52, 53, S4: Final States
p= % per action for slipping left/right
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Q Learning
Basis of a Big Family of Algorithms

September 20, 2020

|
OFFIS

Q(s,a) = rs o+ ymax Q(s', a)
acA

(33)

D)
n

(s,a) =0Vs € {1,2,3,4}
i+ivo+
12+14=231

s0) = maxaca Q(s0,a) =
so, down) = 2.97
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Q Learning |
Q® Value the Action Indicator OFFIS

Q(s,a) = rsa+7 max Q(s',a") (34)

> @ better suited than V for selecting
actions (value of an action, not value of a
state)

>V computable from @

> Missing: method for calculating Q/V
(without knowing all transitions!)
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Value lteration I

A naive Approach to Q Learning OFFIS
r=2 r=1[1,2,1,2,1,...]
r=1 V(si) =1+72+v(1+~(2+...)))

o0
_ Z 1722 4 2,27+
i=0
With v = 0,9:

10  0.919~0.348
V() =2+~71+vQ2+(1+...
50 090 ~o000s15 () =2+ 2401+ )

100 0.91% ~ 0.0000265 = 5 2902 4 19241
i=0
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Value lteration
Algorithm in a Nutshell

procedure Valuelteration(env)

Q «+ [0]

forallse€ S,acsdo

Qs,a — Zs’ pa,s%s/(rs,a + vy maxy Qs’,a’)

Update

end for

return Q
end procedure

September 20, 2020

|
OFFIS

> Vs, a

> Bellman
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Value lteration I

Algorithm in a Nutshell OFFIS

procedure Valuelteration(env)

Q «+ [0] > Vs, a
forallse€ S,acsdo
QRs,a Zs’ pa,s%s/(rs,a + 7y maxy Qs’,a’) > Bellman
Update
end for
return Q

end procedure

> State space must be discrete
> ...and small enough!

> Transition probabilities from observations (s, s1, a)
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Motivation |
Capacity & Compute Power needed for Value Iteration OFFIS

> Saving (s,a,r,s’) b

> Assumption: every value
theoretically known and
iterable

> Back-of-napkin calculation:
8.5 billion floating point
numbers in in 32 GB RAM

0,0) (1,0) (2,0) (3,0)
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Motivation
Capacity & Compute Power needed for Value Iteration OFFls

. LveEs e sl

> Atari 2600 (Benchmark for

pixels, 128 colors h e b
> Each frame:

12833600 5 1070802 pictures ® = -

(states!)
> 99(,97) % of all iterations rq N N

nonsensible

el
> Space Invaders & Co not
discrete
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Motivation |
Capacity & Compute Power needed for Value Iteration OFFIS

time: 119640

> Power grid mixed
discrete/continuous (tap
changer vs. generator
scaling)

> State space in

quasi-stationary calculations
already complex (loat flow
calculations, state
estimation, ...)
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Tabular Q Learning |
Optimizing Value Iteration OFFIS

procedure TabularLearning(env,, @)
Q<+, R<0, e« 10
repeat
s < Read(env)
if s ¢ QV random() < e. then > Exploration vs. Exploitation
a < RandomChoice(A)
€e +— €. — 0,02
else
a < max,ca Qs
end if
s', rs.a < Act(env, a)
QRs,a — (1 —a)Qsa +ar+vmaxycaQs ») > Bellman
R' <~ R
R+~ R+~rs,
until |R — R'| < er
return Q
end procedure
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> Coping with Equivariance |
I Representing Q as Matrix not Efficient Enough OFFIS

Aquivalent Patterns

. . . /\
1000 '
5 ) H
- .} . : > {
B Ll tee & a 3 '
0o 3T K X ) [

: < i
0 . N 5 7 v 3 . o t

70 e - B I ] e v X

. N . 3 . 3 IV . «

' o
€00 P < r
1
500
@0 ; ' ! ! ; ! ; ; .
200801 200802 2008.03 200804 200805 200806 200807 200808 200809

> Difference—wrt actions—between both states?
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> Coping with Equivariance
I Representing Q as Matrix not Efficient Enough

> Difference—wrt actions—between both states?

September 20, 2020

|
OFFIS
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> Coping with Equivariance
I Representing Q as Matrix not Efficient Enough

> Difference—wrt actions—between both states?
> Nonel

> But separate entry in Qs ,: Regression Problem

September 20, 2020

|
OFFIS
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Deep Q Learning |
Non-Linear Representation for Q OFFIS

> Regression Problem: non-linear mapping f : (s,a) — @Q
> f: Artificial Neural Network
> Adapting the algorithm:

1.
2.
3.

Init Q(s, a) with potentially random approximaiton
(s,a,r,s’) = Act(env, a)
Calculate error:

- (Qsa—r)? at the end of episode,
"~ (Qsa— (r +ymaxyeca Qs.))?  during the episode.
(35)

. Change Q(s,a) with gradient descent algorithm (Stochastic

Gradient Descent, SGD)

. Repeat from (2) until convergence
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Independent  and  Identically  Dis- |

tributed. .. ? OFFIS

Base Assumption of SGD a Problem

> Base for Deep Q Learning borrowed from supervised Deep
Learning:
> Assumption of SGD: i.i.d
> Neither nor at DRL
1. Independent: (s, a, r,s’) not independent, obviously
2. Indentically: training data (exploration) differs from optimal
policy (exploitation): (exploration vs. exploitation)
> Solution: Replay Buffer
> Ring buffer
> fixed size
> more or less i.i.d., but still “fresh enough”

September 20, 2020
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Correlation between Steps |
Achilles’ Heel of the Bellman Principle OFFIS

Qs,a =r+v 2;13)4( Qs’,a’ (36)

> Deriving Qs via Qs »: Bootstrapping
s and s’ differ in just one step
> Update of Q(s, a) influences Q(s’,a’): Training unstable

(After updating Q(s,a), Q(s’, a’) becomes worse if immediately
explored; next update worsens, etc. ad infinitum)

> Target Network: copy of Policy Network for Qs o; sync every N
steps
> N a hyper parameter N = [1,000; 10,000]

V
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Partially Observable
Process

A A A A A Ak Ak b i

(o TN o NI o BN o |

i

September 20, 2020

Markov Decision

OFFIS

> How fast do the invaders move?
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Partially Observable Markov Decision

Process OFFIS

> How fast do the invaders move?

> Markov Decision Process dictates

i i that state is completely derivable

e o = from one observation

. > In RL not always possbile:
i /A RN Partially Observable Markov
— Decision Process, POMDP

> Hack: Merge k observations (e.g.,
k = 4 frames in ATARI)
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DQN Training | I
Final Form OFFIS

procedure Dgnlearning(env,~, a, N)
Q « RandomWeights(), Q < RandomWeights()
replayBuffer < ]
€+ 10, n+<0

repeat
5 RandomChoice(A) if Random() < ¢
arg max, Qs 5 else
€+ e¢—0,02

(s',r) + Act(env, a)
replayBuffer < replayBuffer U (s, a, r,s’)
minibatch < RandomSample(replayBuffer)
for all step = (s, a, r,s’) € minibatch do
r if EpisodeEnd(minibatch)

y = A
r+ymaxyeca Qs > else
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DQN Training I

Final Form

L= (Qs,a - }/)2
Q + SGD(Q,y)
n<—n+1
if n= N then
Q<+ Q
n<+20
end if
end for
until HasConverged()
return Q
end procedure

September 20, 2020
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How to Proceed Further

OFFIS
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Deep Q Learning is Only the Beginning |
A Wrapup: What we Should Do Now OFFIS

DQN + Extensions (Rainbow Paper) very handy
But suffers from the curse of dimensionality
“Status Quo” for Power Systems: DQN, DDPG

Still a long way in the power systems community until
AlphaZero is applied

VvV V V V

Power Systems benchmark missing

vV Vv

Framework for multi-agent in power systems missing

> Want to help? Drop a note: eric.veith@offis.de
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