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Spectrum Scarcity : Challenges and Solutions

RF Spectrum

* RF spectrum typically refers to the full frequency range from 3 KHz
to 300 GHz.

 RF spectrum is a national resource that is typically considered as an
exclusive property of the state.

 RF spectrum usage is regulated and optimized

 RF spectrum is allocated into different bands and is typically used for
— Radio and TV broadcasting
— Government (defense and public safety) and industry
— Commercial services to the public (voice and data)

Frequency (Hz)
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Spectrum Scarcity : Challenges and Solutions

US Frequency Allocation Chart
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Spectrum Scarcity : Challenges and Solutions

Growth of Mobile Phone Subscribers

Global Mobile Data Traffic

B1% CAGR 2013-".018

Exabyites per Momnth

2.6 EA
(]
13 2014 20 Source: 5GPPP
T = Pdbal=_ 2174

Mobile internet traffic is pushing the
capacity limits of wireless networks !
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Spectrum Scarcity : Challenges and Solutions

RF Spectrum “Crunch”

 Smartphone usage tripled in 2011.

* Between 2011 and 2016, global wireless data traffic is
expected to increase 18 times more.

* Rapid increase in the use of wireless services has lead the
problems of RF spectrum exhaustion and eventually RF
spectrum deficit.

* FCC predicts that the US would start experiencing a spectrum
deficit for wireless communications at some point.
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Spectrum Scarcity : Challenges and Solutions

Potential Solution

* More efficient usage of the available spectrum:

— Multiple antenna systems
— Adaptive modulation and coding systems

Spectral Efficiency Gains are Slowiitg

bits/sec/Hz
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Source: Qualcomm
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Spectrum Scarcity : Challenges and Solutions

Other Potential Solutions
* More aggressive temporal and spatial reuse of the available
spectrum:
— Cognitive radio systems
— Femto cells & offloading solutions

 Use of unregulated bandwidth in the upper portion of the
spectrum:

— Microwave and millimeter-wave such as 60 GHz & 90 GHz
— THz carriers
— Optical spectrum

(]



Spectrum Scarcity : Challenges and Solutions

Optical Spectrum

I b T R AT

Frequency (Hz)

Visible spectrum is 10 thousands times larger
than the RF spectrum !
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Spectrum Scarcity : Challenges and Solutions

Optical Wireless Communications

* Point-to-point free space optical communications (FSO)

e Visible light communications (know also as Li-Fi for Light-
Fidelity)

* NLOS UV communication

* Underwater optical communication
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Spectrum Scarcity : Challenges and Solutions

RF Spectrum

* RF spectrum typically refers to the full frequency range from 3 KHz
to 300 GHz.

 RF spectrum is a national resource that is typically considered as an
exclusive property of the state.

 RF spectrum usage is regulated and optimized
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— Radio and TV broadcasting
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— Commercial services to the public (voice and data)
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Spectrum Scarcity : Challenges and Solutions

US Frequency Allocation Chart
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Spectrum Scarcity : Challenges and Solutions

RF Spectrum “Crunch”

 Smartphone usage tripled in 2011.

* Between 2011 and 2016, global wireless data traffic is
expected to increase 18 times more.

* Rapid increase in the use of wireless services has lead the
problems of RF spectrum exhaustion and eventually RF
spectrum deficit.

* FCC predicts that the US would start experiencing a spectrum
deficit for wireless communications at some point.
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Spectrum Scarcity : Challenges and Solutions

Potential Solution

* More efficient usage of the available spectrum:

— Multiple antenna systems
— Adaptive modulation and coding systems

Spectral Efficiency Gains are Slowiitg
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Spectrum Scarcity : Challenges and Solutions

Other Potential Solutions
* More aggressive temporal and spatial reuse of the available
spectrum:
— Cognitive radio systems
— Femto cells & offloading solutions

 Use of unregulated bandwidth in the upper portion of the
spectrum:

— Microwave and millimeter-wave such as 60 GHz & 90 GHz
— THz carriers
— Optical spectrum
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Spectrum Scarcity : Challenges and Solutions

Optical Spectrum

I b T R AT

Frequency (Hz)

Visible spectrum is 10 thousands times larger
than the RF spectrum !
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Spectrum Scarcity : Challenges and Solutions

Optical Wireless Communications

* Point-to-point free space optical communications (FSO)

e Visible light communications (know also as Li-Fi for Light-
Fidelity)

* NLOS UV communication

* Underwater optical communication
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Free Space Optical (FSO) Communications: Towards the Speeds of Wireline Networks

Optical Transmission

Optical source Optical detector
laser/LED PIN/APD

L . = . - U
- -
I?ﬁvgr Receiver
LCIrcuit oy .
y ands B
. Link range — 2
Point A Point B

‘ r

* Optical Sources: Light emitting diodes (LED) vs. Laser diodes
(LD): output power, spectral width, E/O efficiency, Safety,
Directionality, Reliability, and Cost)

* Photodetectors: P-i-N (PIN) vs. Avalanche (APD) photodiodes
(Sensitivity, Cost, and Materials)
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Free Space Optical (FSO) Communications: Towards the Speeds of Wireline Networks

Transmission Windows

=
@
1

Clear Sky
Conditions

Ll e
L I TR R 9

Attenuation [dB/km]

R W O N5
Transmission wavelength [ pm]
* Transmission optical windows in the IR region at: 850 nm, 1300
nm, & 1550 nm.
 Match optical fiber communication windows (compatibility of

optical transceivers)
 Above 1400 nm, the eye is less sensitive to light
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Optical Wireless Backhauling: Towards the Speeds of Fiber Optics Backhaul

FSO Basic Principle

I_aser & Photodiaode
Modulator & De-Mod
Telescape

* Narrow beam connects two optical wireless transceivers in LOS.

* Light is transmitted from an optical source (laser or LED) trough the
atmosphere and received by a lens.

* Provides full-duplex (bi-directional) capability.

e 3 “optical windows”: 850 nm, 1300 nm, & 1550 nm.

« WDM can be used => 10 Gb/s (4x2.5 Gb/s) over 1 Km & 1.28 Tb/s

(32x40 Gb/s) over 210 m.

Reference: M. Esmail, A. Ragheb, H. Fathallah, and M. -S. Alouini, "Experimental demonstration
of outdoor 2.2 Tbps super-channel FSO transmission system", in Proc. Optical Wireless
Communications Workshop in conjunction with Proceedings IEEE Internatioarﬁal C‘(_)urlfle_relrlce on

Jaac & )
Communications (ICC'2016), Kuala Lumpur, Malaysia, May 2016. ayi8xllg pglell
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Free Space Optical (FSO) Communications: Towards the Speeds of Wireline Networks

Types of Detection Techniques

Intensity Modulation/Direct Detection (IM/DD): IM/DD is the main
mode of detection in FSO systems. Does not require adaptive

control systems.

Coherent Modulation/Heterodyne Detection (CM/HD):
Heterodyne detection is a more complicated detection method but
has the ability to better overcome the thermal noise effects.
Adaptive control is needed for the carrier phase and state of

polarization.
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Free Space Optical (FSO) Communications: Towards the Speeds of Wireline Networks

Pointing Errors

Definition: Thermal expansion, dynamic wind loads, and weak
earthquakes result in the building sway phenomenon that causes
vibration of the transmitter and the receiver known as pointing

error.
Type Cause(s) Magnitude Frequency
Tip/tilt Thermal High Once per day
expansion
Once every
Sway Wind Medium several
seconds
Equipment, door Many times
Vibration slamming, etc. Low per second

(]



Free Space Optical (FSO) Communications: Towards the Speeds of Wireline Networks

Impact of Pointing Errors

* Effect on Communication (C): These pointing errors may
lead to an additional performance degradation and are a
serious issue in urban areas, where the FSO equipments
are placed on high-rise buildings.

* Model: The pointing error model developed and
parameterized by ¢ which is the ratio between the
equivalent beam radius and the pointing error jitter can
be:

- With Pointing Error: ¢ is any number between 0

through 7

- Without Pointing Error:
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Free Space Optical (FSO) Communications: Towards the Speeds of Wireline Networks

Possible Solutions to the Pointing Errors Problem

* Short Range FSO: Increase the beam divergence
at the expense of higher power loss.

* Long Range FSO: Model: Maintain narrow beam
divergence but put in place a sophisticated
pointing, acquisition, and tracking (PAT) system
to solve the alignment problem in FSO:

* Fixed tracking for short buildings
* Active tracking for tall buildings
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Free Space Optical (FSO) Communications: Towards the Speeds of Wireline Networks

Atmospheric Losses

* Losses due to scattering for particles of size near the optical wavelength
(Mie Scattering):

— Raindrops and snow droplets are typically bigger than the FSO
wavelengths.

— Fog droplets are close in size to FSO wavelenghts.

— Smog (Gases and Smoke) may contain particle matters and water
droplets

e Typical attenuation factors:
— Regular rain: Low attenuation up to 9 dB/Km
— Snow: Moderate attenuation up to 12 dB/Km
— Mist: Moderate attenuation up to 12 dB/Km
— Heavy fog: Strong attenuation of up to 200 dB/Km
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Free Space Optical (FSO) Communications: Towards the Speeds of Wireline Networks

Mitigating Atmospheric Losses

 Mesh architecture and route diversity

 Adaptive power control systems with feedback between
receiver and transmitter

e Hybrid RF/FSO systems:
— RF and FSO complement each others
— Two modes of operations
* Switch mode of operation
* Joint usage mode of operation
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Free Space Optical (FSO) Communications: Towards the Speeds of Wireline Networks

Atmospheric Scintillations

* Intensity fluctuations (known as scintillations) are
observed even in clear sky conditions and under
oerfect alignment conditions.

* Due to variation in temperature among air
oockets which leads to a variation in the air
refraction index along the propagation path.

* Characterized by the Kolmogorov atmospheric
turbulence theory.
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Free Space Optical (FSO) Communications: Towards the Speeds of Wireline Networks

Characterization of Atmospheric Scintillations (1)

e The normalized variance of the irradiance is known as scintillation index:
2 _ 21/ 2
oF =E{I°} / E{1}- -1

* Relation between the scintillation index and the Rytov variance

a I | ] L L ] I ] 1 ]

| wealk 1 strong fluctuations
fluct. |<=—
4 = = ul

Collimated beam

Scintillation lndex

i I i I i | i L I I. i ] i I I
0 2 4 B 8 10 12 14 16 18

ay=(123C M r1151e
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Free Space Optical (FSO) Communications: Towards the Speeds of Wireline Networks

Characterization of Atmospheric Scintillations (2)

m Weak turbulence regime: HR <<1; of = oy’

m Moderate turbulence regime: oy ~1

m Strong turbulence regime: og° >>1
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Free Space Optical (FSO) Communications: Towards the Speeds of Wireline Networks

Atmospheric Scintillations Statistical Modelling

* Frequency flat fading channel
* Slow fading with coherence time: 10 ps and 100 ms
* Popular statistical models:

— Weak turbulence: Lognormal or Gamma-Gamma
(Generalized K)

— Strong turbulence: Exponential or Gamma-Gamma
(Generalized K)

— More generalized models: Double Gamma-Gamma or
Malaga
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Free Space Optical (FSO) Communications: Towards the Speeds of Wireline Networks

Gamma-Gamma Model

= All regimes: weak, moderate, strong
=  Small-scale irradiance fluctuations modulated by large-scale fluctuations

X : large-scale turbulence, Gamma distributed

- V - small-scale turbulence, Gamma distnibuted

| q(ﬂﬁ){mﬁwz (af?ﬁ}
() - T D) I K, ,Q2JaBl), 1>0

K, - Bessel function of second kind and order n
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Free Space Optical (FSO) Communications: Towards the Speeds of Wireline Networks

Gamma-Gamma PDF

"Turbulence strength

—— Weak: @ = 11L&, B = 10.1, of = 0.2
1L ——— Moderate: = 4, B = 1.9, o] = 1.6 _|
—-— Strong =42, B=14c/=35

=
&

=
o

=
Y

Gamma-gamma pdf, p(l)

Irradiance, I
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Free Space Optical (FSO) Communications: Towards the Speeds of Wireline Networks

Mitigating Atmospheric Scintillations

* Time diversity (long delay and large buffer size)
* Frequency diversity (high correlation)
* Space diversity:

— Aperture averaging

— SIMO, MISO, and MIMO (multi-beam & multi-aperture)
systems

* Cooperative diversity
— Relay selection
— Multiuser diversity
— Multi-hop communication
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Optical Wireless Communications: Towards the Speeds of Wireline Networks

On-Going Research Directions: Asymptotic Analysis of Ergodic Capacity

Unified SNR Statistics

e Heterodyne Detection

v =mnel/Np
/theterdoyne — Eﬁ/beterodvne [f)/] — 7}]@561’0(13(116 — T]e EI [l]/NO
T IM/BD v =12 /N
HIM/DD = EA/H\_..I/DD 7] E% 1]/ [’2]
N = Yiyop E7 [1/E[17] = ng EF[1]/No
 Unified

Tr = 772 Ir/NO
pr = e Ep[1]/ No

with irradiance I =/, |,
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Optical Wireless Communications: Towards the Speeds of Wireline Networks

On-Going Research Directions: Asymptotic Analysis of Ergodic Capacity

Asymptotic Ergodic Capacity

* Recall that the irradiance | = Ip and SNR v is proportional to I

 The asymptotic ergodic capacity can be obtained as [Yilmaz and Alouini,
SPAWC’2012]

3,

— %E[Ia ]

w
n=>0 Zeg

n=>0

* We need to find the moments of . then compute derivatives.

Reference: I. Ansari, M. -S. Alouini, and J. Cheng, “On the capacity of FSO links under log-
normal turbulence", Proceedings IEEE Vehicular Technology Conference (VTC Fall'2014),
Vancouver, BC, Canada, September 2014. Journal version in IEEE Transations on Wireless

Communications, August 2015.
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Optical Wireless Communications: Towards the Speeds of Wireline Networks

On-Going Research Directions: Asymptotic Analysis of Ergodic Capacity

Exact Closed-Form Moments

* I=1,1,=1g1 |, wherel, I, and I, are independent random processes

 Unified Rician Moments

E[IE" = [Q/ (K +1)]""T(rn+1) 1F [~rnl; —Kk?]

E[y]=n"E[I""]/Ng = p; E[(Ir I Ip)""]/E""[Ir I Ip]
= u EUR"IE[I[ "1 E[Ip"]/ (E""[IR] E""[I]E""[Ip])

_ g;2(1—rn)/ [(£2 i rn) (52 n 1)—rn}

2 F. | — '1'—k2
rno rn, .1,
xexp{ (rn—l)} 1 12[rn ]—1 )LL?
2 (1+K) T (rnt1)

(]



Optical Wireless Communications: Towards the Speeds of Wireline Networks

On-Going Research Directions: Asymptotic Analysis of Ergodic Capacity

Asymptotic Results
High SNR
C ~ In{epy—r [1/&2+0%/2+1In{€%/ (€ +1)}
Hr
—In{k*/ (1+ K*)} — E1 (K*)]

Low SNR

L -2(1—r) 2
C = — S , _rexp{i(r—l)}
<t (€ +1) (€ +1) 2

X (1 k2)_rr(!’ 1) 1F1 [—r, ]., _k2} C Ly
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Optical Wireless Communications: Towards the Speeds of Wireline Networks

On-Going Research Directions: Asymptotic Analysis of Ergodic Capacity

Asymptotic Results

Comparison between Analytical and Simulation Results at High SNR for IM/DD (r = 2)

Actual Asymptote
— — — Simulation
LN with pointing errors only

° (Nats/Sec/Hz)

Ergodic Capacity, (

12 [ ] ........................ | ........................ | ............................ I

Figure: Ergodic capacity results for IM/DD technique and varying
k at high SNR regime for RLN turbulence
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Optical Wireless Backhauling: Towards the Speeds of Fiber Optics Backhaul

Impact of Pointing Errors

e Effect on Communication: These pointing errors may
lead to an additional performance degradation and are a
serious issue in urban areas, where the FSO equipments
are placed on high-rise buildings.

* Model: The pointing error model developed and
parameterized by ¢ which is the ratio between the
equivalent beam radius and the pointing error jitter can
be:

- With pointing error: ¢ is between 0 and 7
- Without pointing error: {—
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Optical Wireless Backhauling: Towards the Speeds of Fiber Optics Backhaul

Original Pointing Error Model

"
Beam footprint

luwlp-12)
i
| = 1,1
S | |8
a P N 7(
] -
s/ :
Detector

-The fraction of collected power at the receiver can be
approximated by [Farid and Hranilovic, IEEE/OSA JLT 2007]

2r?
I, ~ Agexp R where r = [x y|f, r = \/xz + 2
Zeg
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Optical Wireless Backhauling: Towards the Speeds of Fiber Optics Backhaul

Other Pointing Errors Models

* The general model reduces to special cases as follows
N

Y/\ Y Y/\

¢, G

Figure : iy = iy = 0 and 07 = o (Rayleigh)

7]

Aperture Beam footprint
w, > 6a b |
h

No misalignment

~V
=V

.
L
PN/

Figure : px = py and
Jﬁ = 0 (Gaussian) .

Y

>
X

. alllaac Ellal) deala
Figure : px = py = 0 and Figure : px # py and a4isillg pglell

2 2 2 _ 2 .- King Abdullah University of
C.Tx # U.F (Hﬁyt:l UK - U_}-’ (RICIan)' Science and Technology 2

((



Optical Wireless Backhauling: Towards the Speeds of Fiber Optics Backhaul

Generalized Pointing Error Model

* The fraction of collected power at the receiver can be
approximated by [Farid and Hranilovic, IEEE/OSA JLT, 2007]

2

Eeq

2m _ 2 0 2
£ (r r / o (_(rcc}sﬁ' px)*  (rsin —py) ) 10
0

2TOx0y | 202 2{{5

The random variable r follows a Beckman distribution
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Optical Wireless Backhauling: Towards the Speeds of Fiber Optics Backhaul

Moments of the Irradiance

2
E[I'] =E [AS exp (—2”5 )] = A" M,» (— 2;’ )

erq

n An XS 2 -E -2
B = = ep (— o | T+ g | )
V(n+&)(n+&) W |1tg ltg
where & = g:: and §, = Z’T, are the ratio between the equivalent beam width and

jitter variance for each direction.

E[I"] = E[I7IE[I"] = AZE[I"] M2 (— j;" ) .

M,2(.) is the moment-generating function of the random variable 2 e e ot

King Abdullah University of !\\\—

Science and Technology 2



Optical Wireless Backhauling: Towards the Speeds of Fiber Optics Backhaul

Asymptotic Ergodic Capacity
* The asymptotic ergodic capacity can be obtained as

P a rn
C = ——E[I;"]

ai]E[w”]

71 n=0 W eq

n=>0

* The moments of I, are known for both lognormal (LN) and Gamma-
Gamma (I'T). Then, the asymptotic capacity can be written as

_ J+E)(r+E)T(T(B)
Cler 2 log GETr+a)(r+p)

2r 122 12 €2 r [ 4(pz + py 1 -
N ( Hzbs | Pyly ) -2 ( e +1ty) tata 2 +rip(a) + r(B)

w2 \r+& r+§&
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Optical Wireless Backhauling: Towards the Speeds of Fiber Optics Backhaul

On-Going Research Directions: Ergodic Capacity Calculations under the impact of pointing errors

Asymptotic Ergodic Capacity

12 T T T

) Figure: The ergodic capacity
for:

(@) & =6.7and §, =5.1

(b) §,=6.7and §,=0.9

—— Exact: Simulation
—+— Asymptotic:

10

% gl SR S e ] gt o
: a a A ()5, =08 and§, =0,
|@ N SO DO : A A
g § g Reference: H. Al-Quwaiee, H.-C.
| SRS & | | Yang, and M. -S. Alouini, “On the
B ; iﬁk ; ; asymptotic ergodic capacity of FSO
= 2%,7# ______________ S S Links with Generalized pointing error
Al ; 5 | model”, in Proceedings IEEE ICC’15,
A 3 ; ; :
L i i i London, UK, June 2015. Journal
0 10 20 30 40 50 version in IEEE Trans. Wireless
Average Signal-to-Noise Ratio (SNR), 7 (dB) Communications, Sept 2016
" T alllauc Ellall deals
auisilly poball
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Optical Wireless Backhauling: Towards the Speeds of Fiber Optics Backhaul

Outage Capacity

* FSO channels are typically viewed as slowly varying
channels => Coherence time is greater than the latency
requirement

* OQutage capacity is considered to be a more realistic
metric of channel capacity for FSO systems

* Closed-form expressions are not possible => Importance
sampling-based Monte Carlo simulations

C. Ben Issaid, K. -H. Park, R. Tempone, and M. -S. Alouini, "Fast outage probability simulation for FSO
links with a generalized pointing error model", in Proc. IEEE Global Communications Conference
(GLOBECOM'2016), Washington DC, December 2016.
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Importance Sampling (IS)

P=P(y<yy) = PlI=la s <ly,) = Ply, + Yp <€)
where y_=log(l,), y,=log(l,), and & = log(l,)
* IS estimator:

[* = (y;,n)wyp (Vp,n)

where y; (.) ~fyk( ) =



IS Exponential Twisting

* Weighting Choice:  w,, (x) = e‘HxMyk (0)
where M,, (.) is the MGF of y,
* |S Estimator: i
I" = NLE Ly ntypnce)e " Oant¥om) M, (6)M,,(6)
dM, () =E hgl = exp(%@(@ — 1) 65) (LN fading)

_ (@) T (a+0)I'(5+6)
B NN

o (20 [u3E} w3CH
ixéoneXp< Wieq §%+9+§§1+9

[(E3+0)(E5+0)

QM, (0) =E|h§

(G-G fading)

)

Q M, (6) = E[RS] =



Optimal 0

 Minimization problem:
min E ll(ya+yp<e)w3%a Vo Wy, Va, 9)]
—Stochastic optimization problem: Not feasible

analytically except for a few simple cases.
—Alternative: Find a sub-optimal 0:

— Cumulant generating function:
1(8) = log (E |80a*p)|) = log(M,(6)) + log(M,(6))

— Sub-optimal 0:
) =c¢e



Sub-Optimal 6

 Weak turbulence:
o4 &x +&5 +26 20 | piéx Uy &y
log(Ag) +— (20 — 1) ————2— e P e e
2 2(&x + ‘9)(&3/ + 0) Wzeq (gx'l'e) (§y+5)

e Strong turbulence:

A &R +E+20 20 [ gy uyEy
0 <aﬁ> 2@+ 0) @2 10) whg|@ro T @rey| TV TVE
+0)=c¢
where y(x) = '@

I'¢x)



Outage Probability
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Efficiency

Efficiency Indicator

Efficiency indicator over G-G fading

Efficiency indicator over LN fading
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Outage Probability

Impact of Jitter Unbalance
on Outage Probability

Outage Probability over LN fading
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Positioning, Acquisition, and Tracking (PAT) for
FSO Links
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A Single Detector vs. An Array of Detectors

= =

%i;sz’fﬁ":z’,@‘}"sz’fﬁtﬁz}_@lxﬁ&tsz&&tze@izeﬁﬁzz&@‘izz&@iz&&tzeﬁ@}x@izﬂ@%z&@:zﬁxﬁ&tzgﬁ@s@&&

Detector
Array of Detectors -

_____.-"

(Gaussian Beam Contours of Constant Beam Intensity

M. S. Bashir and M. -S. Alouini, "Signal acquisition with photon-counting detector arrays in free-
space optical communications ", IEEE Transactions on Wireless Communication, Vol. 19, No. 4,
pp. 2181-2195, April 2020. ’
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Gaussian Beam on the Detector Array

* The Gaussian beam on the photosensitive detector array is characterized as

—(x—x0)?2— (Y —Yo0)?

}“5(}{: }"'f Z) é I'D Exp

2p%(2)
* The number of photons in the mth detector are modeled by a Poisson random
variable u\i\
P{Zm=zm})=exp|— || K[As(x,y,2)+An] dxdy 7 \\
Am z y ;y /,I
x ([, [Kslx,¥,2)+ Ap)] dxay) e ==
Zm! 4 —

Contours of a Gaussian beam
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Maximum Likelihood Detector (1)

* Two hypotheses:

Ho : There is no signal pulse on the detector array
Hi : There is a signal pulse on the detector array

P(ZL|H1) Ho rP1(Z21,. 22, ..., 2Z2m) Ho
s vy == = Y.
P(Z|Ho) H, prPo(Z1,. Z2, ..., Zm) H1

T (}hnA]Zm E—AHA

po(z1,z2,...,.,2zm) = | [ |
m=1 <m -

M (N\m)Tme—Nm

pi(zi, z2,....2zm) = | [ | .
m=1 <m :

where A = |Am| and

—(x—xg)2—(v—yg)?2
N = ff (Ioe 2p2(2) + }\n) dx dy.
Am
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Maximum Likelihood Detector (2)

* The likelihood ratio for this detection problem is:

M 1 —(x=x0)?—(y=y0)?
Zmlin| 1+ —JJIUE 202 (2) dx dy
m=1 AnA

Am
Om
Ho —(x—Xp)°—(¥—yp)?
< In(y) + fj Ipe 2p%(2) dx dy
H1y
C
Yo
 Optimum decision rule
M Ho

ZmOom = Yo.
m=1 H 1
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Probability of Missed Detection

* The probability of missed detection is

M
Pmép({ Zmﬂ'm‘:'}’(}}), |
m=1

—(x—xg)2—(y—yp)?
where Zm,, ~ Poisson (Jj (I(}E 202(2) + An) dx dy)
Am

* The probability of missed detection can be approximated by
[Fay and Feuer’1997]

M
Pn=P|{ D Zmam <7vYo| |=~P({Zo <kvo}),
m=1

Q(lksyvo + 1], ksiis),

, F'(x.y)
X,y)= :
ko 2 Hs QL. ) £ S
gz ['(x, y) is the upper incomplete gamma function:

o0

oo
r(x, y) éf tX—le—tdt, TI'(x) éj tX—le—t dt.
Yy 0



Comparison of Approximations

—t— simulations

- = Poisson approx.
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Dependence on the Beam Center
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prakakdlity

parababdlity
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Acquisition Time

Receiver Telescope

Total acquisition time: Tu=Ts X+ Td W = Y+V
* Ts: Scan time
 X: Number of “failed ”’ attempts
 Td: Dwell time
 W: fraction of time in last “successful’’ attempt

M. S. Bashir and M. -S. Alouini, "Signal acquisition with photon-counting detector arrays in free-space optical
communications ", |IEEE Transactions on Wireless Communication, Vol. 19, No. 4, pp. 2181-2195, April 2020.



Distribution of W

» [t can be shown that the density function of W is

p2(2) p%(2)
Jw(w) = ——=-exp| ———=W |- L{o,00)(W)
20, 20

where W is an exponential random variable with

M. S. Bashir and M. -S. Alouini, "Signal acquisition with photon-counting detector arrays in free-space optical
communications ", IEEE Transactions on Wireless Communication, Vol. 19, No. 4, pp. 2181-2195, April 2020.



Acquisition Time Performance

fry (B) = fr(y) * fv(v).

Complementary Cumulative Distribution Function of Acquisition Time

P({Tv > 7}) = (1—p) | exp (=) x L PP ekl .

1 — pexp (81%) 1—p
with 3 N >
! ETd ET{E}
M. S. Bashir and M. -S. Alouini, "Signal acquisition with photon-counting detector arrays in free-space optical communications 12

", IEEE Transactions on Wireless Communication, Vol. 19, No. 4, pp. 2181-2195, April 2020.



Asymptotic Acquisition Time Performance

1 — (pexp (8Ts)) H:I_W P H:I_

P({Ty >~}) =(1—p) | exp(—p7) x +
' 1 — pexp (GTs 1 —
pexp (BTs) p
Term 1 Term 2

(4
» When p — 0, P({Tu > 7}) = exp(—p). This is easy to see because for
p=0 = P({Y =0})=1 = Ty =V which is exponentially
distributed. In other words, we never do a rescan of uncertainty region.

» When p — 1, then Term 1 can be ignored compared to Term 2 and
P({Tu > ~}) — 1 for any finite 4. In other words, p = 1 = Ty —

M. S. Bashir and M. -S. Alouini, "Signal acquisition with photon-counting detector arrays in free-space optical communications 13
", IEEE Transactions on Wireless Communication, Vol. 19, No. 4, pp. 2181-2195, April 2020.



Acquisition Time as Function of Noise Power and

Beam Radius
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M. S. Bashir and M. -S. Alouini, "Signal acquisition with photon-counting detector arrays in
free-space optical communications ", |IEEE Transactions on Wireless Communication, Vol.
19, No. 4, pp. 2181-2195, April 2020.
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Probability of Error Performance

== @== EGC Array

SC Array M =4
SC Array M =16
SC Array M =64
MRC Array M =4
MRC Array M =16
MRC Array M =64
= Single @ =0.5

+ Single a =0.75

veneees Single a=1

——
——

—

P (p"

1 1 1 | 1 1 1 1 |
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Np [Wimm?]

M. —C. Tsai, M. S. Bashir and M. -S. Alouini, “Probability of error performance comparison
of a single detector versus an array of detectors", Under review.
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Regular/Untethered UAV (UUAV)

ground users
— Probability increases ®)
with altitude 'g' A

* Mobility and
relocation flexibility

—Track the time-varying &
traffic demand spatial
distribution
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Limitations of uUAVsS

— %3*@*33@23@3#@23@23@33@2#
g}xz@x@x@x@x@x@x@x@%:@x@x@x@x@x@x@::@@:@@:@4:@::@x@x@x@x@ri:{@@:@}x{@}x@}

* Limited battery capacity

— UAV limited availability (average flight time in
untethered UAVs is less than 1 hour)

— Restrictions on the payload (number of
antennas/RF chains)

* Service quality restricted by backhaul link
capacity

* “Drone-flyaway” risk/problem
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Tethered UAVs (tUAVS)

Tethered UAV

* Flight time improvement &
increased payload

— Powered by a ground station

* Wired backhaul to the core network S il
through high capacity link Y
— Avoid the inherent unreliability AWhet
of UAV wireless backhaul.

 Avoid “Drone-flyaway” risk &
problem

e riE U RRIREIY ‘t;r J.E' .
M. A. Kishk, A. Bader, & M.-S. Alouini, “Capacity & coverage enhancement using long-endurance tethered airborne
base stations,” IEEE Vehicular Tech. Magazine 2020. Online: arxiv.org/abs/1906.11559



Urban Deployment

Tethered UAV ,447_7‘7;;4(f;;:3"
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Tether

Surrounding
structures
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\—— Data link
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Tethered versus Untethered UAVS
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Laser-powered UAVS

Laser Beam Directors

M. Lahmeri, M. A. Kishk and M.-S. Alouini, "Stochastic Geometry-based Analysis of Airborne Base Stations with
Laser-powered UAVs," /EEE Communications Letters, 20189. 9
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Performance Metrics & Parameters

. : » :;:,mu ,,.,“.' 4»,;”,».,,,,,,%"
e Performance Metrics: ;?“” 9)
ol e 92,
—Energy coverage probability. é L
—SNR coverage probability. s o

—Joint coverage probability.
 Parameters Affecting Performance

— LBDs density.

— Atmospheric turbulence
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Energy Coverage Probability

E—— F== ===
Penergy = P@harv(RI >Lpprop_ —ll{-_comm_) JI

Harvested power DY s b
® é J
L
: 353‘
Propulsion power

Communication-related e o |
power

M. Lahmeri, M. A. Kishk and M.-S. Alouini, "Stochastic Geometry-based Analysis of Airborne Base Stations with
Laser-powered UAVs," /EEE Communications Letters, 20189. 11
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Penergy = IED(pharv(]%) > Pprop + pcomm)-
Lemma 1: The energy coverage probability has the following upper bound

—ApmR*?
Penergygl_e r .

Lemma 2: The energy coverage probability is given by:

oo
P —— / (1 — Fy, (a(r)))?w)\Lre_}‘L”er,
0
where Fj, is the cumulative distribution function of the turbulence h;.

Pprop T Pcomm é Lt
Pharv (7)

a(r) =

M. Lahmeri, M. A. Kishk and M.-S. Alouini, "Stochastic Geometry-based Analysis of Airborne Base Stations with
Laser-powered UAVs," /EEE Communications Letters, 20189.

12
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Energy coverage probability
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Main Results on SNR Coverage
Probablllty

SNR Coverage Probability

Psxr = P(SNRyay > f3)

= / 1 — Fp, (b(r)) 2w ALre M dr,

2gAfB3
Where b( ) WS?]pharv (7) ’
Ly e A D "o,
L <
LA

M. Lahmeri, M. A. Kishk and M.-S. Alouini, "Stochastic Geometry-based Analysis of Airborne Base Stations with
Laser-powered UAVs," /EEE Communications Letters, 20189. 14
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M. Lahmeri, M. A. Kishk and M.-S. Alouini, "Stochastic Geometry-based Analysis of Airborne Base Stations with
Laser-powered UAVs," /EEE Communications Letters, 20189. 15



IDjoint — P(pha,rv(R) > Pprop + Pcomm s SNRUAV > 6)
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M. Lahmeri, M. A. Kishk and M.-S. Alouini, "Stochastic Geometry-based Analysis of Airborne Base Stations with
Laser-powered UAVs," /EEE Communications Letters, 20189. 16
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Nikola Tesla
(10 July 1856 — 7 January 1943)

“When wireless is perfectly applied, the
whole earth will be converted into a huge
brain, which in fact it is, all things being

Q

(

A"
particles of a real and rhythmic whole. o
We shall be able to communicate with Thank You
one another instantly, irrespective of

distance.” ctl.kaust.edu.sa
Nikola Tesla (1925)

slim.alouini@kaust.edu.sa
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