

Electrocardiography Signal Decomposition Using a Novel Modulated Ensemble Empirical Mode Decomposition Method

Chun-Hsiang Huang, Po-Hsun Huang, and Tzu-Chien Hsiao

Speaker: Chun-Hsiang Huang (s09930720@gmail.com) Advisor: Tzu-Chien Hsiao

Institute of Biomedical Engineering National Chiao Tung University

eTELEMED 2020, eHealth information processing

Curriculum vitae

Educational experience

2013/09-2017/06: Department of Computer Science, College of CS, NCTU (GPA 3.38)
2017/07- now : Institute of Biomedical Engineering, College of ECE, NCTU (GPA 4.0)

Programming skill

- Intermediate: LabVIEW, C/C++, PHP, ExtJS, MySQL, MATLAB, etc.
- Basic: Python, Haskell, etc.

> Working experience

■ 2015/08- now: Hermes-Epitek IT. (Part-time on IT Division)(漢民科技)

Certificate

2017/04/25 Certified LabVIEW Associate Developer (CLAD, 100-317-19069)2017/12/29 Certified LabVIEW Developer (CLD, 100-918-10039)

>Introduction

- Background
 - •Electrocardiography (ECG)
 - ▶T wave in heart disease
 - •ECG decomposing and features extracting
 - •Ensemble Empirical Mode Decomposition (EEMD)
- Motivation and objective

>Method

- Modulated EEMD
- Testing data

≻**Result**

- ➢Discussion
- ➤Conclusion
- ➢Acknowledgement
- **≻**Reference

Electrocardiography (ECG)

- Electrocardiography (ECG) is an important test in the diagnosis of heart disease,
- ECG usually consists of several waveforms, such as P wave, QRScomplex, and T wave.

Feature	description	
P wave	Depolarization of the atria	R
QRS complex	Depolarization of the right and left ventricles	
T wave	Ventricular repolarization	
PR interval	Duration of the impulse from the sinus node to the atrioventricular node	
ST segment	Period of ventricles depolarization	
QT interval	The beginning of the QRS complex to the end of the T wave	ι <u>, '</u> μ',

Many diseases are diagnosed by T wave's feature. For example, T-wave inversion, biphasic T-wave, T-wave alternans, etc.

Hypokalemia

associating with myocardial ischaemia and hypokalaemia

■T-wave alternans

T-wave alternans

https://litfl.com/t-wave-ecg-library/

associating with ventricular arrhythmias and sudden death

http://www.washingtonhra.com/ekg-monitoring/t-wave-alternans-mtwa.php

ECG decomposing and features extracting

> Detect by amplitude, spacing, and location

- susceptible to noise
- vulnerable to respiratory fluctuations

> Wavelet transform

- not adaptive
- mother wavelet will limit the performance of the wavelet analysis

Empirical Mode Decomposition (EMD)

mode mixing problem

Ensemble Empirical Mode Decomposition (EEMD)

- > Adding noise into signal to solve the mode mixing problem
- The noise added in EEMD may remain in Intrinsic Mode Functions (IMFs) and cause reconstruction error

EEMD algorithm

- When using EMD to decompose ECG, it is easy to have mode mixing problems.
- Using EEMD can avoid mode mixing problems, but will cause noise to remain in the ECG.
- > T wave is an important feature which is associated with many disease.
- In this study, we propose a new method based on EMD and EEMD. The new method will not add noise to the original signal, but can solve mode mixing problem and decompose T wave.

Modulated EEMD

- The Gaussian white noise will only assist to get the reference points which is treated as the extrema points.
- The modified part will solve the mode mixing problem and avoid adding external noise into the ECG signal.

Modulated EMD algorithm

Simulated ECG

generated by LabVIEW "Simulate ECG"

> PhysioNet QT database ECG

- Fs: 250 Hz
- T-wave labeling
- totally 105 records

Database	MIT-BIH						ESC
	Arrhythmia	ST change	Supraventricular Arrhythmia	Long Term ECG	Normal Sinus Rhythm	Sudden Cardiac Death Holter	ST-T
Records amount	15	6	13	4	10	24	33

ESC: European Society of Cardiology

Database ECG will test

- original signal
- signal with 60 Hz power line
- signal with Gaussian white noise

Main component with T-wave information was retained in the last IMF
 QRS-complexes' timing can be easily checked

Result

ECG signal with Gaussian white noise

000

- ✓ The noise is decomposed at IMF1
- ✓ Main component with T-wave information with almost no noise was retained in the last IMF

105 records decomposed results

Discussion

✓ IMF₄ has the highest correlation coefficient (r) and the lowest Root Mean Square Error (RMSE) with T wave!

Discussion

Indoment indicator	Signal treatments				
Judgment indicator	Original signal	Add power line noise	Add Gaussian white noise		
Correlation coefficient	0.97±0.03	0.98±0.02	0.98±0.02		
Root mean square error	0.04 ± 0.04	0.03±0.03	0.04±0.03		

- > The results show that our method is useful for decomposing T waves
- The result demonstrates that our method has good performance in decomposing T-waves when the ECG signal has no negligible power line noise and Gaussian white noise.

Conclusion

- > When decomposing ECG, modulated EEMD has less influence on power line noise and Gaussian white noise.
- > This study might help for ECG feature extraction and detection.
- How to automatically mark ECG's features is the next important research.

This work was fully supported by Taiwan Ministry of Science and

Technology under grant numbers MOST 108-2221-E-009-087.

[1] T. M. Nazmy, H. EL-Messiry, and B. Al-Bokhity, "Adaptive Neuro-Fuzzy inference system for classification of ECG signals", The 7th International Conference on Informatics and Systems (INFOS), pp. 1-6, 2010

[2] A. Espiritu-Santo-Rincon and C. Carbajal-Fernandez, "ECG feature extraction via waveform segmentation", IEEE International Conference on Electrical Engineering Computing Science and Automatic Control (CCE), pp. 250-255, September 2010.

[3] T. Khan, N. Sultana, R. Reza, and R. Mostafa, "ECG feature extraction in temporal domain and detection of various heart conditions",

2015 InternationalConference on Electrical Engineering and Information Communication Technology (ICEEICT), pp. 1-6, May 2015.

[4] S. Jain, V. Bajaj, and A. Kumar, "Riemann Liouville fractional integral based empirical mode decomposition for ECG denoising", IEEE J. Biomed. Health Inform., vol. 22, no. 4, pp. 1133-1139, 2018.

[5] V. Seena and J. Yomas, "A review on feature extraction and denoising of ECG signal using wavelet transform", Devices Circuits and Systems, pp. 1-6, March 2014.

[6] D. Zavantis, E. Mastora, and G. Manis, "Robust automatic detection of P wave and T wave in electrocardiogram", 2017 Computing in Cardiology (CinC), pp. 1-4, 2017.

[7] S. Z. Mahmoodabadi, A. Ahmadian, M. D. Abolhasani, M. Eslami, and J.H. Bidgoli, "ECG feature extraction based on multiresolution wavelet transform", Proc. 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3902-3905, January 2005.

[8] T. Liu, Z. Luo, J. Huang, and S. Yan, "A comparative study of four kinds of adaptive decomposition algorithms and their applications", Sensors, vol. 18, no. 7, pp. 2120-2170, July 2018.

[9] N. E. Huang, et al., "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proc. R. Soc. Lond. A, vol. 454, pp. 903-995, 1998.

[10] S. Pal and M. Mitra, "Empirical mode decomposition based ECG enhancement and QRS detection", Comput. Biol. Med., vol. 42, no. 1, pp. 83-92, January 2012.

[11] Z. Wu and N. E. Huang, "Ensemble empirical mode decomposition: A noise-assisted data analysis method", Advances in Adaptive Data Analysis, vol. 1, no. 1, pp. 1-41, 2009.

[12] M. E. Torres, M. A. Colominas, G. Schlotthauer, and P. Flandrin, "A complete ensemble empirical mode decomposition with adaptive noise", Proc. IEEE Int. Conf. Acoust. Speech Signal Process., pp. 4144-4147, May 2011.

[13] M. A. Colominas, G. Schlotthauer, and M. E. Torres, "Improved complete ensemble EMD: A suitable tool for biomedical signal processing", Biomed. Signal Process. Control, vol. 14, pp. 19-29, November 2014

Thanks for your attention

Chun-Hsiang Huang (黃駿翔) s09930720@gmail.com