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Bandit Machines

Which 

machine 

to play to 

maximize 

reward ?
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Exploration and Exploitation 4

Should I 

always 

order my 

favorite 

dishes or try 

some 

exciting 

new ones?



Common Applications

 Patient management by 

examining the effect of 

different treatments

 Efficient network routing 

for improving 

performance

 Financial portfolio 

investment 

 Dynamic allocation of 

resources to different 
projects
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Bernoulli Bandits

Binary Outcome

After the lever is pulled, the 

machine provides a reward of 

+1 with probability p, and a zero 

reward with probability q = 1- p.

Let by Ui be the random variable 

of each such reward 
⟹ the gross positive reward up 

to and including the tth play is

Lt = U1 +…+ Ut
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Non-Bernoulli Bandits 7

 If the rewards are not of the Bernoulli type, then the rewards will not be just 0 or 1

 Since playing the game is not free, we would regard a zero reward to be actually a negative 

reward – one may consider that the player has lost this time, since he or she needs to pay in 

order to play the game in the first place

 Let the cost for each play (i.e. each pull of the bandit arm) be c > 0, and the payout for each 

positive reward be a positive random variable V > 0 with finite expectation

 Let Ri be the random variable denoting the reward outcome of the ith play, which equals V

with probability p and equals −c with probability q = 1−p

 The net positive reward up to and including the tth play is

Mt = R1 +…+ Rt

 We denote the σ-field of  Rt by Ft, i.e. 

Ft = σ(R1, …, Rt)

and the σ-field of  Ut by St, i.e. 

St = σ(U1, …, Ut)

 The corresponding filtrations are denoted by {Fn} and {Gn} respectively



Predicting Future Reward 

Possibilities

Theorem I

With respect to the filtration {Fn} the net positive 

reward process Mt is 

 a supermartingale if E(V) < c(1−p)/p

 a martingale if E(V) = c(1−p)/p

 a submartingale if E(V) >  c(1−p)/p
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Greedy Algorithms

 Epsilon-greedy strategy 

 the most favorable arm is selected for a proportion epsilon of the 
time, and for the rest of the time, the arms are randomly and 

uniformly chosen

 Epsilon-first strategy

 there is an exclusive exploration phase, during which an arm is 

randomly and uniformly chosen

 After the completion of the exploration phase, there is an 

exclusive exploitation phase during which the most favorable 
arm is always chosen
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Greedy Algorithms

 Epsilon-decreasing strategy 

 While there is a distinct transition point from the exploration 

phase to the exploitation phase in the epsilon-first strategy, the 

transition from exploration to exploitation occurs gradually over 
time through progressively reducing the value of epsilon in the 

epsilon-greedy strategy

 Adaptive epsilon-greedy strategies

 Similar to the epsilon-decreasing strategy except that the epsilon 

value decreases either in accordance with the learning progress 

or some Bayesian update procedures
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Exploring by hopping from Machine 

to Machine

11

Some exploration algorithms such as UCB or Thompson Sampling requires all the 

machines to be available for exploration, and the exploration procedures require 

hopping from machine to machine – this is often neither realistic nor possible because 

the machines may be occupied by other gamblers

More useful to systematically explore a single machine at a time



Exploration Episodes and Stopping 

Times

 Exploration can be viewed as a Binary Classification Problem

 To classify bandits as exploitable and non-exploitable

 Then one may, through further exploration, identify the best 
machine(s) to exploit

 Stopping Rule ST1: the exploration episode will stop 
immediately after m consecutive positive rewards have been 
received − this stopping time is denoted by T1

 Stopping Rule ST2: the exploration episode will stop 
immediately after m total positive rewards have been 
received − this stopping time is denoted by T2

 The termination of such episodes (i.e. ST1 and ST2) will result in 
the inclusion of the relevant bandit machines on the “White 
List”, i.e. these are worthy of exploitation 
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Exploration Episodes and Stopping 

Times

 Stopping Rule ST3: the exploration episode will stop immediately 

after r consecutive negative rewards have been received − this 

stopping time is denoted by T3

 Stopping Rule ST2: the exploration episode will stop immediately 

after r total negative rewards have been received − this stopping 

time is denoted by T4

 The termination of the above episodes (i.e. ST3 and ST4) will result in 

the inclusion of the relevant bandit machines on the “Black List”, i.e. 

these are unworthy of exploitation 
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Exploration Episodes and Stopping 

Times

Theorem II

 The random variables T1, T2, T3, T4 are stopping times of 

the sequence {Ui} with respect to the filtration {Gn}

Corollary

 The random variables T1, T2 are stopping times of the 

sequence {Ri} with respect to the filtration {Fn}
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Unfair Game - Supermartingale

 The above stopping rules are quite realistic and often resemble the 

behavior and psychology of some actual gamblers 

 They tend to depart once a run of good luck or bad luck is experienced 

or when too many losses or wins are accumulated

 From the properties of martingales, we note that a supermartingale

would result in an unfair game from the point of view of the player

 Submartingales would be relatively rare unless an entrance fee is 

charged for playing the bandits

 We shall determine the cost of exploration for the above stopping 

times
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Exploration Cost for ST1

Let bn be the probability that m consecutive positive rewards occurs at 

trial n, with n ≥ m, not necessarily for the first time, and we denote by 

B(z) be the corresponding probability generating function. Then we 

have

𝐵 𝑧 =
1 − 𝑧 + 𝑞𝑝𝑚𝑧𝑚+1

(1 − 𝑧)(1 − 𝑝𝑚𝑧𝑚)
.
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Exploration Cost for ST1

We denote by A(z) the probability generating function for the event 

that the accumulation of m positive rewards occurs for the first time. 

Then the generating function A(z) is related to B(z) by 

𝐴 𝑧 =
𝐵 𝑧 − 1

𝐵(𝑧)

which gives

𝐴 𝑧 =
𝑝𝑚𝑧𝑚

1 − 𝑞𝑚 σ𝑘=0
𝑚−1 𝑝𝑘𝑧𝑘

.
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Mean and Variance of the 

Exploration Duration for ST1

E 𝑇1 = 𝐴′(1) =
1−𝑝𝑚

𝑞𝑝𝑚 ,

Var 𝑇1 = 𝐴′′ 1 + 𝐴′ 1 − 𝐴′ 1 2

=
1

𝑞2𝑝2𝑚
−

2𝑚 + 1

𝑞𝑝𝑚
−

𝑝

𝑞2
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Exploration Properties of ST1

Theorem III

The average gross positive reward under stopping rule ST1 is given by

1 − 𝑝𝑚

𝑞𝑝𝑚−1
− 1 + 𝑝 𝑚

and the associated average duration of the episode is given by

1 − 𝑝𝑚

𝑞𝑝𝑚
.
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Exploration Cost for ST2

The probability generating function of F(z) corresponding 

to T2 is

𝐹(𝑧) = [
𝑝𝑧

1 − 𝑞𝑧
]𝑚
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Exploration Properties for ST2

the mean and variance of T2 can be obtained

𝐸 𝑇2 = 𝐹′ 1 =
𝑚

𝑝
,

Var 𝑇2 = 𝐹′′ 1 + 𝐹′ 1 − 𝐹′ 1 2 =
𝑚𝑞

𝑝2
.

It is not hard to see that T1 ≥  T2, and hence E(T1)  ≥  E(T2). Hence we have:

Theorem IV

The average gross positive reward under stopping rule ST2 is m, and the 
average duration of the episode is m/p.
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Exploration Properties of ST3 and ST4

The corresponding results for ST3 and ST4 may be obtained by making use of 

the reflection principle, through interchanging the role of p and q, and 

replacing m by r. Consequently, we have the following theorems. 

Theorem V

The average gross negative reward under stopping rule ST3 is given by
1 − 𝑞𝑟

𝑝𝑞𝑟−1
− 1 + 𝑞 𝑟

and the average episode duration is given by
1 − 𝑞𝑟

𝑝𝑞𝑟

Theorem VI

The average gross negative reward under stopping rule ST4 is r, and the 
average episode duration is r/q
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Comparison of ST1 and ST2 23

No. of Rewards Required

Cost Comparison of Stopping Rules ST1 and ST2 (p = 0.6).

The left vertical axis is used for E(T1) 

with an appropriate scale.

The right vertical axis is used for E(T2).

The performance of ST1 is 

manifested in a steep climb in the 

number of trials as m increases, as 

opposed to a relatively moderate 

increase in ST2.



Non-Bernoulli Bandits for ST1

The average reward at the termination of the episode under rule ST1 is

[E(T1) – m]pE(V) + mE(V) – cE(T1)

The average reward under stopping rule ST1 for an episode

𝐸 𝑀𝑇1
= 𝑝

1 − 𝑝𝑚

𝑞𝑝𝑚
𝐸 𝑉 + 1 − 𝑝 𝑚𝐸 𝑉 − 𝑐

1 − 𝑝𝑚

𝑞𝑝𝑚
.
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Non-Bernoulli Bandits for ST2

The average total positive rewards from stopping rule ST2, 

ignoring the cost of play, is mE(V). 

The average net reward under stopping rule ST2 is

𝐸 𝑀𝑇2
= 𝑚[𝐸 𝑉 −

𝑐

𝑝
].
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Regret Analysis 26

For a given suboptimal bandit machine with

probability pj < p, the average regret for a given

bandit machine j under ST1 is

𝑝
1 − 𝑝𝑚

𝑞𝑝𝑚
𝐸 𝑉 + 1 − 𝑝 𝑚𝐸 𝑉 − 𝑐

1 − 𝑝𝑚

𝑞𝑝𝑚

− 𝑝𝑗

1 − 𝑝𝑗
𝑚

𝑞𝑗𝑝𝑗
𝑚 𝐸 𝑉 + 1 − 𝑝𝑗 𝑚𝐸 𝑉 + 𝑐

1 − 𝑝𝑗
𝑚

𝑞𝑗𝑝𝑗
𝑚 .



Regret Analysis 27

The total average regret under ST1 is

𝐸 𝜌1

= 𝑝𝐾
1 − 𝑝𝑚

𝑞𝑝𝑚
𝐸 𝑉 + 1 − 𝑝 𝑚𝐾𝐸 𝑉 − 𝑐𝐾

1 − 𝑝𝑚

𝑞𝑝𝑚

− 

𝑗=1

𝐾

{
1 − 𝑝𝑗

𝑚

𝑞𝑗𝑝𝑗
𝑚 𝐸 𝑉 + 1 − 𝑝𝑗 𝑚𝐸 𝑉 − 𝑐

1 − 𝑝𝑗
𝑚

𝑞𝑗𝑝𝑗
𝑚 }.



Regret Analysis 28

For a suboptimal bandit machine, the average regret for a

particular sub-optimal machine j under ST2 is

𝐸 𝜌2 =
𝑚𝑐(𝑝 − 𝑝𝑗)

𝑝𝑝𝑗

giving the total average regret E(ρ2) incurred from the

exploration of all K bandit machines under ST2 as



𝑗=1

𝐾
𝑚𝑐(𝑝 − 𝑝𝑗)

𝑝𝑝𝑗
.



Experiments 29

m p
E[T1]

(th)

E[T1]

(expt)
Err (%)

E[T2]

(th)

E[T2]

(expt)
Err (%)

std. [T1]

(th)

std. [T1]

(expt)

Err

(%)

std. [T2]

(th)

std. [T2]

(expt)

Err

(%)
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0.6 9.07 9.05 0.247 5.0 4.99 0.200 7.01 7.01 0.018 1.83 1.81 0.863

0.75 5.48 5.47 0.018 4.0 4.00 0.000 3.40 3.38 0.307 1.15 1.15 0.006

0.9 3.71 3.72 0.129 3.33 3.33 0.100 1.46 1.46 0.584 0.61 0.61 0.355

5

0.6 29.65 29.77 0.397 8.33 8.35 0.199 26.00 26.16 0.599 2.36 2.36 0.142

0.75 12.86 12.84 0.121 6.67 6.66 0.100 9.31 9.31 0.035 1.49 1.49 0.142

0.9 6.94 6.93 0.031 5.56 5.56 0.080 3.24 3.23 0.469 0.79 0.78 0.253

7

0.6 86.81 87.02 0.242 11.67 11.67 0.029 81.44 81.91 0.673 2.79 2.79 0.292

0.75 25.97 25.85 0.461 9.33 9.34 0.071 20.89 20.84 0.226 1.76 1.77 0.355

0.9 10.91 10.91 0.057 7.77 7.78 0.029 5.79 5.80 0.142 0.93 0.93 0.405

10

0.6 410.95 412.69 0.422 16.67 16.67 0.019 402.81 405.22 0.597 3.33 3.34 0.181

075 67.03 67.05 0.030 13.33 13.33 0.025 59.51 59.37 0.244 2.11 2.10 0.334

0.9 18.68 18.67 0.037 11.11 11.11 0.010 7.01 7.01 0.018 1.83 1.81 0.863

Comparison of theory and experiments

Since the 

error% all fall 

below 1%, we 

observe good 

agreement 

with the 

theoretical 

predictions



Experiments 30

E(T1)

Converges to the theoretical value

p = 0.6

m = 5



Experiments 31

Std Dev(T1)

Converges to the theoretical value

p = 0.6

m = 5



Experiments 32

E(T2)

Converges to the theoretical value

p = 0.6

m = 5



Experiments 33

Std Dev(T2)

Converges to the theoretical value

p = 0.6

m = 5



Conclusion
 Uses martingales to study Bernoulli K-armed bandits as well as non-Bernoulli ones

 Analyzed the rewards for K-armed bandits, focusing on an episodic basis, where episodes 

are determined in terms of martingale stopping times

 Martingales are particularly appropriate in the current situation of game playing

 Typically supermartingales are prevalent

 The stopping times delimit an episode of play, and the rewards for each episode is 

determined under different stopping criteria, along with the duration of an episode

 The characteristics of four stopping rules ST1, ST2, ST3, ST4 are analyzed

 Experimentations have been carried out, which show good agreements with the predicted 

findings

 Since bandit situations are ubiquitous and pervasive in many decision-making contexts, the 

same methodology and analysis may be usefully deployed in a broad variety of practical 

problems that have an equivalence with the K-armed bandit framework, supporting the 

making of sound operational decisions
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