PARALLEL ADAPTIVE SIMULATION OF PROCESSES FROM SCIENCE AND ENGINEERING

D. Logashenko, A. Nägel, S. Reiter, A. Vogel, G. Wittum gabriel.wittum@kaust.edu.sa

Presentation on ADVCOMP, 1AR1A Oct 2021

Short Bio

Gabriel Wittum holds professorships for Applied Mathematics, Computational Science, Computer Science and Bioengineering at KAUST, Saudi Arabia, and for Modelling and Simulation at Frankfurt University, Germany. He is an expert in modelling and simulation of problems from empirical sciences. He solves problems from the classical physical and engineering sciences like fluid mechanics, groundwater flow and transport, environmental science, energy research, reaching out to biology, pharmacy, medicine, finance and many more disciplines. Starting from numerical analysis, he develops advanced models, robust and scalable multi-grid methods and software systems for large scale computing. For his scientific work he has been honoured with the Heinz-Maier-Leibnitz price and the doIT Software Award. He authored over 200 scientific publications.

The fundamental laws necessary for the mathematical treatment of a large part of physics and the whole of chemistry are thus completely known, and the difficulty lies only in the fact that application of these laws leads to equations that are too complex to be solved.

P.A.M. Dirac (1927)

Modelling Basics

- Morphology model
 - Geometry
 - Material properties
- Process model

based on first principles (balance laws)

reliable model with prognostic quality

Modelling Basics

- A model is an answer, it needs a question.
- The model should be as detailed as necessary to answer the question and as simple as possible. "Man soll die Dinge so einfach machen wie möglich, aber nicht einfacher." (Einstein)
- Complexity <-> Reliability
- Simulation technique is decisive for the complexity limit

Modeling and Simulation

Mathematical Model

System of differential equations

Numerical approximation Numerical methods discretisation and solver

Software Tools

Applications, Mathematics (Analysis)

Numerics

Computer Science

Modeling and Simulation

Mathematical Model System of differential equations

Numerical approximation Numerical methods discretisation and solver

Software Tools

Numerics

Computer Science

Modeling and Simulation

Mathematical Model System of differential equations

Numerical approximation Numerical methods discretisation and solver

Software Tools

Hardware

Mapping Reality

Errors, Complexity

Complexity, Flexibility, ...

Limiting Resource

Adaptivity

• Refine grid where needed

Peter Bastian

Complexity - HPC Paradoxon

Algorithm complexity: Execution time $E = O(n^q)$, q > 1

Buying a new computer: On a new i.e. larger and faster computer, larger problems will be computed. Assume the new computer is a factor $\alpha > 1$ faster and larger than the old one. To compute a problem of size $\alpha \cdot n$, the new computer needs

 $O(\alpha^{q} \cdot n^{q}) = \alpha^{(q-1)} \alpha E.$

The larger and faster the computer becomes, the longer the execution time will be!

Large scale computing needs q=1 i.e. optimal algorithms!

SIMULATION SYSTEM UG4

Adaptivity

Parallelism

38

Multigrid

SIMULATION SYSTEM UG4 Engineering

- porous media flow
- CO₂ injection
- geothermal flows
- CFD
- struct. mechanics
- energy research
- chemical eng.
- process eng.
- biomass ferment.
- aeroacoustics

Finance

- option pricing
- credit risk estimation
- portfolio optimization

Medicine (Health)

- transdermal drug delivery
- signal processing in neurons
- HC virus replication
- infectious diseases

ng 4 DEVELOPERS

New code $\pi G4$ ≈ 200 person years for development

M. Breit S. Grein A. Grillo M. Heisig I. Heppner M. Hoffer S. Höllbacher M. Knodel M. Lampe L. Larisch B. Lemke D. Logaschenko I. Muha A. Nägel C. Poliwoda R. Prohl G. Queisser S. Reiter M. Rupp

P. Schröder
M. Stepniewski
S. Stichel
A. Vogel
C. Wehner
G. Wittum
K. Xylouris

ng4 I. Heppner, A. Nägel, S. Reiter, M. Rupp, A. Vogel

- completely new code, strongly modularized
- hybrid unstructured grids, hanging nodes
- finite volumes of arbitrary order, finite elements
- parallel adaptive and robust multigrid
- highly scalable
- FAMG as separate module

ng4 I. Heppner, M. Hoffer, A. Nägel, S. Reiter, M. Rupp, A. Vogel

- efficient parallel data migration via MPI-based
 Parallel Communication Layer (PCL) (Reiter et al 2015)
- Tool for gridding: ProMesh (Reiter 2017)
- GUI based on VRL (Hoffer, W. 2014)

$\mathcal{T}_{G} 4 \ GU1 \ (\mathsf{M. Hoffer})$

- Based on VRL (Visual Reflection Library)
- allows graphical control of simulation

Mg 4 GUI (M. Hoffer)

- Based on VRL (Visual Reflection Library)
- allows graphical control of simulation

Parallel Scaling

- *cuG* 3 (1999):
 Parallelization based on DDD, strongly limited parallelization (≤ 4096 cores)
- *nG* 4 (2014):
 Parallelization based on PCL, perfect scaling up to 264144 cores.

UG4: GMG Weak Scaling

• Laplacian 3d, GMG, structured

Weak Scaling UG4											
•	Linea	ar ela	asticity 3d		displacement Magnitude 20 40 60 80 90.2 90.2						
	PE	level	DoF	$T_a(s)$	$T_s(s)$	$T_{a+s}(s)$	$E_{a+s}(\%)$	S_{a+s}	S_{ideal}		
	1	3	14'739	2.347	4.987	7.334	-	-	-		
	8	4	107'811	2.352	5.070	7.422	98.8	7.9	8		
	64	5	823'875	2.368	5.212	7.580	96.8	62.0	64		
	512	6	6'440'067	2.375	5.414	7.789	94.2	482.3	512		
	4'096	7	50'923'779	2.400	5.502	7.902	92.8	3'801.1	4'096		
	32'768	8	405'017'091	2.371	5.711	8.082	90.7	29'720.6	32'768		
	262'144	9	3'230'671'875	2.391	5.816	8.207	89.4	234'356.7	262'144		

MODELING AND COMPUTATION OF THERMOHALINE FLOW IN HETEROGENOUS POROUS MEDIA

S. Stichel, A. Grillo, M. Lampe, D. Logaschenko, S. Reiter, A Vogel, G. Wittum in cooperation with S. Attinger, E. Fein, W. Kinzelbach, A. Schneider

DENSITY DRIVEN GROUNDWATER FLOW

• Saltwater intrusion

A CONTRACT OF CONTRACT

• Upconing

• Flow around saltdomes

GABRIEL WITTUM G-CSC, UNI FRANKFURT

D³F

• Distributed Density Driven Flow

$$\frac{\partial(n\rho(c))}{\partial t} + \nabla \cdot (\rho(c)\vec{v}) = Q_p(c),$$

$$\frac{\partial(n\rho(c)c)}{\partial t} + \nabla \cdot (\rho(c)(c\vec{v} - \mathbb{D}\nabla c)) = Q_c(c)$$

+ b.c.; with $\vec{v} = -K/\mu(c)(\nabla p - \rho(c)\vec{g}),$

$$\mathbb{D}(\vec{v}) := D_m \mathbb{I} + \alpha_t |\vec{v}| \mathbb{I} + (\alpha_l - \alpha_t) \vec{v} \vec{v} / |\vec{v}|,$$
$$\frac{1}{\rho} := \left(1 - \frac{c}{c_{\max}}\right) \frac{1}{\rho_f} + \frac{c}{c_{\max}} \frac{1}{\rho_s}$$

GABRIEL WITTUM G-CSC, UNI FRANKFURT

D³F

• complicated domains w. unstructured grids (ng)

D³F

- Full density dependent non-linear dispersion
- fully parallel adaptive

D³F PARALLEL EFFICIENCY

• Uniform refinement

weak scaling

Р	h	UKN	NIT[#]	TIT[<i>s</i>]	$S_S[#]$	E_S
1	1/8	147.074	19	37.31	1	1.0
8	1/16	1.082.498	23	45.83	5.4	0.67
64	1/32	8.414.978	35	54.12	24	0.37
512	1/64	66.602.498	22	58.54	282	0.55

• Adaptive refinement

weak scaling

h	UKN	TNLS[s]	TADAPT[<i>s</i>]	TLB[s]	TMIG[s]
1/16	21.016	52.3	1.93	0.97	3.57
1/32	102.280	224.	13.2	3.99	13.2
1/32	433.908	657.	44.6	11.2	41.8
1/64	1.750.708	2708.	160.	27.9	108.

• Lang, S., Wittum, G.: Large scale density driven flow simulations using parallel unstructured grid adaptation and local multigrid methods. Concurrency Computat., 17, 11, 1415 - 1440, Oct. 2005.

Weak Scaling UG4

• Thermohaline flow in porous media, 2d Elder problem

pe	L	DoFs	N_{iter}	T_{ass}	E_{ass}	T_{init}	E_{init}	T_{gmg}	E_{gmg}	T_{all}	E_{all}
32	8	2.102.274	11	6,15	-	4,93	-	8,62	-	37,96	-
128	9	8.398.850	11	6,16	99,8	4,86	101,4	8,70	99,1	$38,\!15$	99,5
512	10	33.574.914	11	$6,\!11$	100,7	4,97	99,2	9,31	92,6	39,37	96,4
2.048	11	134.258.690	11	$6,\!18$	99,5	5,09	96,9	$9,\!45$	91,2	40,18	94,5
8.192	12	536.952.834	11	$6,\!13$	100,3	5,03	98,0	9,96	86,6	41,11	92,3
32.768	13	2.147.647.490	10	$6,\!17$	$99,\!6$	6,22	79,3	10,84	79,6	48,45	78,3
131.072	14	8.590.262.274	10	$6,\!10$	100,7	$5,\!99$	82,3	10,66	80,9	$53,\!37$	$71,\!1$

• Solving $\phi_f \frac{\partial \hat{\rho}_f}{\partial t} + \nabla \cdot (\hat{\rho}_f \mathbf{q}_f) = 0,$ $\phi_f \frac{\partial (\hat{\rho}_f \omega_s)}{\partial t} + \nabla \cdot (\hat{\rho}_f \omega_s \mathbf{q}_f + \mathbf{J}_d) = 0,$ $\phi_f \hat{\rho}_f \Theta \frac{\mathbf{D}_f \hat{S}_f}{\mathbf{D}t} + (1 - \phi_f) \rho_r \Theta \frac{\partial \hat{S}_r}{\partial t} + \nabla \cdot (\mathbf{J}_T - \hat{\mu}_{sw} \mathbf{J}_d) = 0,$

with
$$\mathbf{q}_f = -\frac{k}{\nu_f} (\nabla p - \rho_f \mathbf{g})$$
 (Onsager)

$$\mathbf{J}_{d} = -\phi_{f}\rho_{f}D\nabla\omega_{s} - \phi_{f}\rho_{f}D\frac{k_{p}}{p}\nabla p - \phi_{f}\rho_{f}DS\omega_{s}(1-\omega_{s})\nabla\Theta,$$

$$\mathbf{J}_{T} = -\phi_{f}\rho_{f}DQ\nabla\omega_{s} - \phi_{f}\rho_{f}DQ\frac{k_{p}}{p}\nabla p - \left[L_{TT} - \phi_{f}\rho_{f}\frac{DQh_{sw}}{\Theta\frac{\partial\widehat{\mu}_{sw}^{i}}{\partial\omega_{s}}}\right]\nabla\Theta,$$

Solving

$$\begin{aligned} \phi_f \frac{\partial \widehat{\rho}_f}{\partial t} + \nabla \cdot (\widehat{\rho}_f \mathbf{q}_f) &= 0, \\ \phi_f \frac{\partial (\widehat{\rho}_f \omega_s)}{\partial t} + \nabla \cdot (\widehat{\rho}_f \omega_s \mathbf{q}_f + \mathbf{J}_d) &= 0, \\ \phi_f \widehat{\rho}_f \Theta \frac{\mathcal{D}_f \widehat{S}_f}{\mathcal{D}t} + (1 - \phi_f) \rho_r \Theta \frac{\partial \widehat{S}_r}{\partial t} + \nabla \cdot (\mathbf{J}_T - \widehat{\mu}_{sw} \mathbf{J}_d) &= 0, \end{aligned}$$

Alfio Grillo, Michael Lampe, Gabriel Wittum: Modelling and Simulation of temperature-density-driven flow and thermodiffusion in porous media. Journal of Porous Media, 2010.

• opposite effects of temperature and salt concentration

Temperature ↑

salt water ↓

- connection of mass flux with temperature gradient (Ludwig–Soret effect)
- connection of heat flux with concentration gradient (Dufour effect)

EXAMPLE

• Moving parcel, benchmark problem from Oldenburg, Pruess, 1999 (2d)

• Dufour effect – negative buoyancy

• Ludwig effect – positive buoyancy

GRID DEPENDENCE

Symmetry breaking due to grid refinement The number of fingers depends on grid size and time.

FRACTURED MEDIA

FRACTURED MEDIA

• Low dimensional formulation

Multiphase flow

R. Helmig; O. Kolditz; V. Reichenberger; ...

 Multiscale modeling and numerics: Dynamic coupling between micro and macroscales

FLOW IN FRACTURED MEDIA

low dimensional <-> full dimensional

Representation of fractures:

- 1. Polyhedral faces + pointwise thickness
- 2. expand to volume

FRACTURE EXTRUSION IN 3D

Extrusion of a triangle and a quadrilateral.

Extrusion of a 2d fractured geometry. Left: 2d source, Middle: boundary surfaces, Right: Volume geometry. Created with ProMesh3.

• Grid follows the anisotropic direction rectangularly

successful treatment of anisotropy possible: ARTE

LOW DIMENSIONAL MODEL

• Density driven flow model

average across fracture

$$\langle F \rangle(t, x, y) := \frac{1}{\epsilon} \int_{-\epsilon/2}^{\epsilon/2} F(t, x, y, z) \mathrm{d}z.$$

+transmission conditions

TRANSMISSION CONDITIONS

• Full dimensional:

Continuity of normal fluxes

$$-\rho(c_f)\frac{K_f}{\mu}\left(\frac{\partial p_f}{\partial n} - \rho(c_f)g_n\right) = -\rho(c_m)\frac{K_m}{\mu}\left(\frac{\partial p_m}{\partial n} - \rho(c_m)g_n\right)$$
$$-D_f\left(1 - \frac{\rho'}{\rho^{pW}}c_f\right)\frac{\partial c_f}{\partial n} = -D_m\left(1 - \frac{\rho'}{\rho^{pW}}c_m\right)\frac{\partial c_m}{\partial n}.$$

Continuity of pressure and concentration $p_f = p_m$, and $c_f = c_m$

TRANSMISSION CONDITIONS (Grillo)

• Low dimensional

the auxiliary vector fields

$$\mathbf{Q}_{\alpha} := \rho^{pW} \mathbf{q}_{\alpha} - \rho' \mathbf{J}_{\alpha}, \quad \text{and} \quad \mathbf{P}_{\alpha} := c_{\alpha} \mathbf{q}_{\alpha} + \mathbf{J}_{\alpha};$$

with
$$\mathbf{q}_{\alpha} = -\frac{\mathbf{K}_{\alpha}}{\mu} [\nabla p_{\alpha} - \rho_{\alpha}(c_{\alpha})\mathbf{g}], \qquad \rho' = \frac{\rho^{pB} - \rho^{pW}}{\rho^{pB}}$$

 $\mathbf{J}_{\alpha} = -\left(\frac{\rho^{pW}}{\rho^{pW} + \rho' c_{\alpha}} \mathbf{D}_{\alpha}\right) \nabla c_{\alpha}$

are continuous across the fracture interfaces

$$Q_{fn}^{(k)} = Q_{mn}^{(k)}, \text{ and } P_{fn}^{(k)} = P_{mn}^{(k)}$$

LOWER DIM. REPRESENTATION

$$\frac{\partial(\phi_{\Sigma}\rho_{f}c_{f})}{\partial t} + \nabla_{\Sigma} \cdot (\rho_{f}c_{f}\mathbf{q}_{\Sigma} - \rho_{f}\mathbf{D}_{\Sigma}\nabla_{\Sigma}c_{f}) + \frac{1}{\epsilon}(\rho_{f}c_{m}\mathbf{q}_{\perp} - \rho_{f}D_{\perp}\delta c_{m})|_{b}^{a} = 0$$

$$\frac{\partial(\phi_{\Sigma}\rho_{f})}{\partial t} + \nabla_{\Sigma} \cdot (\rho_{f}\mathbf{q}_{\Sigma}) + \frac{1}{\epsilon}(\rho_{f}\mathbf{q}_{\perp})|_{b}^{a} = 0$$

$$\mathbf{q}_{\Sigma} = -\frac{K_{\Sigma}}{\mu_{f}}(\nabla_{\Sigma}p_{f} - \rho_{f}\mathbf{g}_{\Sigma})$$

$$\mathbf{q}_{\perp} = -\frac{K_{\perp}}{\mu_{f}}(\delta p - \rho_{f}\mathbf{g}_{\perp})$$

$$(\delta c_{m})|_{a} := \frac{c_{a} - c_{f}}{\epsilon/2} \quad , \quad (\delta p)|_{a} := \frac{p_{a} - p_{f}}{\epsilon/2}$$

Henry's Problem (2d)

Intrusion of saltwater into freshwater aquifer

Parameters in fracture: $\phi_{\Sigma} = 2\phi_m, \ K_{\Sigma} = 10^3 \cdot K_m$

HENRY'S PROBLEM

• Parameters

Symbol	Quantity	Value	Unit
D_d	Diffusion coefficient	$18.8571 \cdot 10^{-6}$	$[m^2 s^{-1}]$
$D_m = \phi_m \ D_d$	Diffusion coefficient in the medium	$6.6 \cdot 10^{-6}$	$[m^2 s^{-1}]$
$D_f = \phi_f \ D_d$	Diffusion coefficient in the fracture	$13.2 \cdot 10^{-6}$	$[m^2 s^{-1}]$
g	Gravity	9.81	$[m \ s^{-2}]$
K_m	Permeability of the medium	$1.019368 \cdot 10^{-9}$	$[m^2]$
K_{f}	Permeability of the fracture	$1.019368 \cdot 10^{-5}$	$[m^2]$
ϕ_m	Porosity of the medium	0.35	-
ϕ_f	Porosity of the fracture	0.7	-
$\dot{\mu}$	Viscosity	10^{-3}	$[\text{kg m}^{-1} \text{ s}^{-1}]$
$ ho_w$	Density of water	$1\cdot 10^3$	$[\mathrm{kg} \mathrm{m}^{-3}]$
$ ho_s$	Density of brine	$1.025\cdot 10^3$	$[\mathrm{kg} \mathrm{m}^{-3}]$
a^t_{lpha}	Transversal dispersivity length	0	[m]
a^l_{lpha}	Longitudinal dispersivity length	0	[m]

HENRY'S PROBLEM W. FRACTURE

$\epsilon = 3 \text{ mm}, \text{T} = 5 \text{ h}$

HENRY'S PROBLEM W. FRACTURE

G-CSC, UNI FRANKFURT

HENRY'S PROBLEM W. FRACTURE

COMPARISON D-1 AND D DIM

averaged c

ROTATIONAL FLOW

THIN FRACTURE

ε = 0.006

Rotational Flow

 $\boldsymbol{\varepsilon} = 0.024$

VORTICITY

$$\omega = \nabla \times \mathbf{q} = \frac{\rho' K}{\mu} \nabla c \times \mathbf{g}$$

with
$$\mathbf{q} = -\frac{K}{\mu}(\nabla p - \rho \mathbf{g})$$

and $\rho_{\alpha}(c_{\alpha}) = \rho^{pW} + \rho' c_{\alpha},$

Vorticity is maximum, if the concentration gradient is perpendicular to gravity (i.e. isolines are parallel)

Henry in 3D

3D

PROFILE

Full dimensional

$\epsilon = 0.024$

OBSERVATIONS

- For very thin fractures a low dim. model suffices
- In wider fractures, rotational flow can occur

FLOW CHARACTERIZATION

$$\theta_f := \frac{|\mathbf{q}_f|}{|\mathbf{q}_{\text{rot}}|} \qquad \mathbf{q}_{\text{rot}} := \frac{\epsilon}{2} \frac{K_f}{K_m} \frac{\omega_f}{\omega_\theta} (\nabla \times \mathbf{q}_f)$$

$\mathbf{q}_{\mathrm{rot}}$ rotational flow velocity

- θ_f is dimensionless, characterizes flow
- $|\mathbf{q}_f| > |\mathbf{q}_{\text{rot}}|$ rotational flow can be neglected

CRITERION

$$\theta_{\mathscr{F}} := \max_{\mathscr{F}} \{\theta_f\}$$

$$\theta_{\mathscr{F}} < 1-\delta$$
 d-dimensional
 $\theta_{\mathscr{F}} > 1+\delta$ $(d-1)$ -dimensional

CRITERION

$$\theta = \frac{\epsilon |\omega_f|}{\|v_\theta\|} \frac{K_f}{K_m} \frac{c_f}{c_\theta}$$

 $\max \theta > \theta_0 \quad => \text{ full dimensional} \\ \max \theta \le \theta_0 \quad => \text{ low dimensional} \\$

DIMENSIONAL ADAPTIVITY

- The fracture representation is adapted during the computation
- Full-dimensional resolution is used only, if necessary
- We need:
 - 2 grids (low and full dimensional)
 - Transfer operators between these grids
 - Criterion, when to use which formulation

TRANSFER OPERATORS

"Full -> Low":

- Copy values on the interface (p corrected)
- Value on the interface is mean value across the fracture

"Low -> Full":

• We assume quadratic behaviour of the function in the fracture. Values on the interface with corrected p and mean values are given.

TRANSFER OPERATORS

DIMENSIONAL ADAPTIVI

 $\epsilon = 0.006$

GABRIEL WITTUM G-CSC, UNI FRANKFURT

DIMENSIONAL ADAPTIVI

38

 $\epsilon = 0.024$

Comparison in 3d $\epsilon = 0.003$

С

 $C_{l} - C_{u}$

Comparison in 3d $\epsilon = 0.024$

С

 $C_{l} - C_{u}$

Test Example

- Variation of
 - Thickness and length of fracture
 - Angle with gravity
 - Parameters (Conductivity,...)
 - Boundary conditions

Test Example

- 3 simulation runs for each configuration:
 - d-dimensional
 - (d-1)-dimensional
 - dimensional-adaptive
- Comparison of results:
 - d-dim. is reference solution
 - max. rel. error

Test Example: Results

Test Example: Results

		$E_{\mathrm{rel}}(\hat{\omega}_f)$ [%]		$E_{\rm rel}(\omega_m^{(2)}-\omega_m^{(1)})~[\%]$	
		(d-1)-dim.	dimadaptiv	(d-1)-dim.	dimadaptiv
Maximum	$\max_{\{i=1,\dots,N\}} E_i$	87	31	> 100	76
Mean value	$\bar{E} = \frac{1}{N} \sum_{i=1}^{N} E_i$	12	2	24	4
Mean dev.	$\frac{1}{N}\sum_{i=1}^{N} E_i - \bar{E} $	14	3	40	7
0.75-Quantil	$F^{-1}(0.75)$	16	1	0	0
0.9-Quantil	$F^{-1}(0.9)$	34	5	28	3

Statistics of N = 1261 test problems

Comparison in 3d $\epsilon = 0.024$

С

 $C_{l} - C_{u}$

Results Criterion

SELECTED PUBLICATIONS

- A. Grillo, D. Logashenko, S. Stichel, G. Wittum: Simulation of Density-Driven Flow in Fractured Porous Media. *Advances in Water Resources*, 2010
- Alfio Grillo, Michael Lampe, Gabriel Wittum: Three-dimensional simulation of the thermohaline-driven buoyancy of a brine parcel. *Comput Vis Sci*, 2010
- A. Grillo, M. Lampe, D. Logashenko, S. Stichel, and G. Wittum: Simulation of salinity- and thermohaline-driven flow in fractured por media. *J Por Med*, 2011
- Grillo, A., Reiter, S., Logaschenko, D., Stichel, S., Wittum, G.: Models and simulations of variable-density flow in fractured porous media. *IJCSE*, 2013.
- Grillo, A., Logashenko, D., Stichel, S., Wittum, G. (2014). Forchheimer's correction in modelling flow and transport in fractured porous media. *Computing and Visualization in Science*, 15(4), 169-190
- Reiter, S., Logashenko, D., Grillo, A., Wittum, G. (2014). Preparation of grids for simulations of groundwater flow in fractured porous media. *Computing and Visualization in Science*, 15(4), 209- 225

Transdermal Drug Delivery

D. Feuchter, M. Heisig, A. Nägel, S. Reiter,
A. Vogel, G. Wittum, R. Wittum together with
S. Hansen, G. Lee,
C-M. Lehr, R. Lieckfeldt, U. Schäfer

Skin Anatomy

Primary Barrier: Stratum Corneum (SC)

Goals:

- Characterize Barrier (Permeability, Lag Time)
- Prediction of behavior in an exposure scenario

Aims

- Quantitative understanding of diffusion through stratum corneum and of permeation pathways
- Influence of corneocyte permeability
- Are corneocytes permeable?
- Influence of layer offset
- Deriving reduced models

Detailed SC Models

Brick-and-mortar: Ribbon (2D), Cuboid (3D) (Heisig et al, 1996; Wang et al., 2006; Rim et al., 2007; ...)

Micrograph of mouse ear SC (D. Menton, Am J Anat, 145:1-22, 1976)

15

Corneocytes ----surrounding lipid layer -----

Grid Problem

- highly anisotropic (aspect ratio: 150/1)
- => large approximation error
- remedy:
- anisotropic ("blue") refinement! (Kornhuber, 1990)

2d Brick and Mortar

Base Grid

Gridlines follow jumps of coefficients

Grid Problem

- highly anisotropic (aspect ratio: 150/1)
- => large approximation error
- remedy:
- anisotropic ("blue") refinement! (Kornhuber, 1990)

Cuboid modeller (C. Wagner, 2007)

Tetrakaidekahedron (TKD)

Babett Lemke

Tetrakaidekahedra Model

• Basic Element:

• Tetrakaidekahedron (14 faces)

Tetrakaidekahedra Model

- Theory of densest packing (Kepler 1611)
- What space-filling arrangement of regular polyhedra has minimal surface area?
- W. Thompson (Kelvin) 1885: Tetrakaidekahedron

TKD for cells in tissue

- Cells fill tissue => polyhedral form except for special functions (neuron, hepatocyte,...)
- Cell membrane is from lipid bilayers, a special material quite costly for the cell => surface minization

Tetrakaidekahedra Model

• Flattening of Corneocytes

Dirk Feuchter

Tetrakaidekahedra Model

Dirk Feuchter

Process Model: Diffusion

 $\frac{\partial c(x,t)}{\partial t} = \nabla^T \cdot (\mathbf{D}(\mathbf{x})\nabla c(x,t)) \text{ in } \Omega \subset \mathbb{R}^d$

with $\mathbf{D}(x) = \begin{cases} \mathbf{D}_{Lip}(x) & \text{for } x \in \text{Lipid} \\ \mathbf{D}_{Cor}(x) & \text{for } x \in \text{Corneocyte} \end{cases}$

Process Model: Diffusion

Boundary and initial conditions

$$\frac{\partial c(x,t)}{\partial \overrightarrow{n}} = 0 \text{ on } \partial \Omega_l, \partial \Omega_r$$

and $c(x,t) = \begin{cases} 0 & \text{for } x \in \Omega_u \\ 1 & \text{for } x \in \Omega_o \end{cases}$

Transmission conditions on internal interfaces

$$\mathbf{D}_{Lip} \nabla c_{Lip}(x,t) \cdot \overrightarrow{n} = \mathbf{D}_{Cor} \nabla c_{Cor}(x,t) \cdot \overrightarrow{n}$$
$$K_{Cor/Lip} c_{Lip}(x,t) \big|_{n-} = c_{Cor}(x,t) \big|_{n+}$$

Simulation Results T=T.../3

Simulation Results T=2T_∞/3

 $\epsilon = 10^{-4}$

 $\varepsilon = 10^{-6}$

Simulation Results T=T_∞

 $\varepsilon = 10^{-4}$

 $\varepsilon = 10^{-6}$

Characterization

• Flux across upper boundary

•

$$F_{\Gamma_0}(t) = \int_{T_0} D \, \frac{du}{dt} d\sigma = f_\infty + \sum_j \alpha_j e^{-\lambda_j t}$$

Mass transported across upper boundary

$$M_{\Gamma_0}(T) = \int_0^T F_{\Gamma_0}(t)dt = f_\infty T + m_0 + \sum_j \beta_j e^{-\lambda_j t}$$

Experiment (schematic)

Characterization Lag Time

Gabriel Wittum AMCS, CEMSE, KAUST G-CSC,University of Frankfurt

t

Analytical Solutions

1. $\epsilon = 1$ (homogenuous membrane): $T_{lag} = 20$ sec

2. $\epsilon = 0$ (impermeable corneocytes): $T_{lag} \approx 1 h$

 $T_{lag,\infty} = \frac{L^2}{6D}$

Computed Lag Times

Computed Lag Times

Tlag vs. E and Kcor/lip

T_{lag} vs. ε and ω

Simulation: 2D Brick Model

- Lieckfeldt, R., Lee, G, Heisig, M., Wittum, G.: Diffusant concentration profiles within cornecytes and lipid phase of stratum corneum. *Proceed. Internat. Symp. Control. Rel. Bioact. Mater.*, 20 (1993)
- Intra cellular pathways matter
- Nearly optimum barrier design,
- Robust w.r.t. insensitivity against shift and corneocyte permeability.

Simulation: 2D Brick Model

- Lieckfeldt, R., Lee, G, Heisig, M., Wittum, G.: Diffusant concentration profiles within cornecytes and lipid phase of stratumcorneum. *Proceed. Internat. Symp. Control. Rel. Bioact. Mater.*, 20 (1993)
- Intra cellular pathways matter
- Nearly optimum barrier design,
- Robust w.r.t. insensitivity against shift and corneocyte
 permeability.
- Experimentally confirmed in 2003!

Gabriel Wittum ^{Langer et al 2003} ECRC, CEMSE, KAUST G-CSC,University of Frankfurt

Tetrakaidekahedra based model A. Nägel

Morphology & Process = Effect $\partial_t (Ku) + \partial_x [-DK\partial_x u] = 0$

Transport equation (w/ diffusion and partition coefficients)

Gabriel Wittum G-CSC Goethe University Frankfurt

Weak Scaling UG4

 Robust GMG solver for skin problem (transdermal drug delivery)

Weak Scaling UG4 A. Nägel

 Robust GMG solver for transdermal drug delivery problem (JuQueen)
 > 10⁹ unknowns

Skin Problem: TKD

Sebastian Reiter

Base solver UG4: Parallel adaptive multigrid
 acceleration from 10² to 10⁶ by adaptivity

Parallel Adaptivity

A. Nägel, S. Reiter, A. Vogel

Resolution [nm]

25.91

2,70

uniform

adaptive

Base solver UG4: Parallel adaptive mg

 acceleration by 512 by adaptivity

Importance of adaptivity increases with problem size!

Parallel Adaptivity

- Key strategy for
 - saving CPU time (99.5%),
 - saving power (99.5%),
 - improving accuracy (uniform needs 3 more levels to reach same error)
- Higher order effect without additional smoothness
- Importance of adaptivity increases with problem size!
- Multi-scale modeling necessary.

Thank you!

