Application Services in Space Information Networks

dr. Anders Fongen, oct 2021 Norwegian Defence University College, Cyber Defence Academy, Lillehammer email: anders@fongen.no

CYBER 2021, Barcelona, Spain

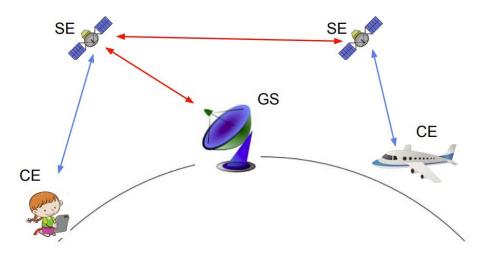
Presenter's bio

Anders Fongen

- Associate Professor, Norwegian Defence University College
- Field of research: Distributed Systems, Networking security
- PhD in Distributed Systems, Univ. of Sunderland, UK, 2004
- Career history
 - 4 years in military engineering education
 - 10 years research in defence research (Chief Scientist)
 - 8 years in civilian college (Associate professor)
 - \circ 11 years in oil industry
 - 6 years in electronics industry

Introduction

- The future of satellite communication?
 - Application Services ("Cloud Computing in Space")
 - Higher System Complexity natural evolution
- What are the advantages?
 - Very Low Latency (as low as 2 ms)
 - Global coverage
- Interesting property of a Low Earth Orbit (LEO) system
 - Long idle periods (due to inhabited surface) mixed with traffic peaks
- Viewed as a problem of Distributed Computing
 - having a set of distinct properties


What is a SIN (Space Information Network)?

- A collection of communicating LEO satellites, called Satellite Endpoints (SE)
- Able to serve terrestrial/airborne client (CE)
 - Communication services (e.g., IP transport, VoIP, Publish-Subscribe comm.)
 - Discovery Services (DNS, Service Brokering...)
 - Storage Services (Content Distribution Network, caching, session states)
 - Application Services (Collaborating editing, Situational awareness ...)
- Resource constrained / disadvantaged
- Predictable workload and link availability
- "Mobile" system: Stationary clients, mobile infrastructure
- Rapid hand-over of client connection and *client state*

Components of a SIN and their relations

- Satellite Endpoints (SE)
 - Any combination of LEO and HEO satellites
- Client Endpoints (CE)
 - Clients to the SIN (but may offer services), on ground or airborne
- Ground Station (GS)
 - Connects the SEs to other endpoints and resources in the Internet

Population distribution

We correlated a LEO orbit with the population density on the surface below.

- Great variations, with high peaks of short duration followed by idle periods. Looks like one peak per orbit.
- Should include these data into the task scheduling in the SE. Introduce *delay tolerant tasks*, e.g., speculative caching

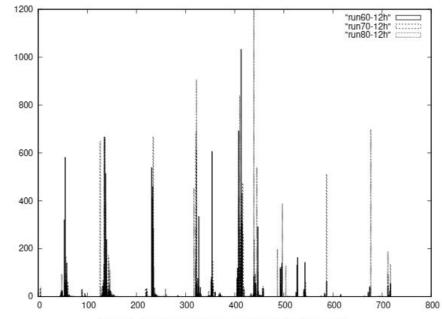
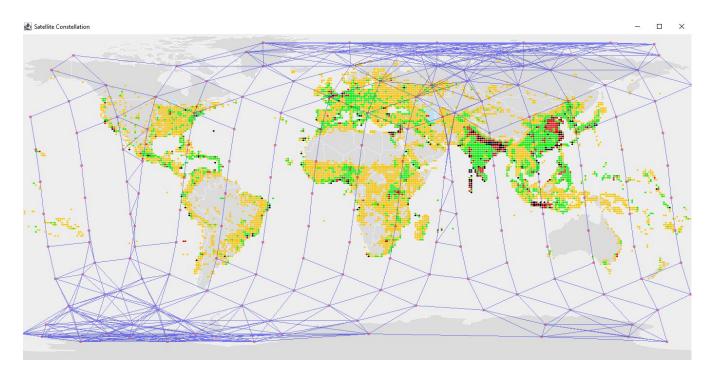



Figure 1. Population density below a satellite during 12 hour orbit

SE constellation vs population density

Example applications served in a SE

Discovery Service - DNS

- Increase hit rate through active replication of DNS entries in the SE (from GS)
 - Selection based on predicted DNS queries. Machine learning?

Conversational Services - VoIP

- Latency sensitive service. Choose forwarding path through less loaded SEs
- SIP service in every SE
- Multi-party conversations should employ IP multicast

Example applications served in a SE

Storage Service - Content Distribution Networks (CDN)

- CDN storage subject to active replication, based on expected queries.
- Do not exploit locality of clients, since infrastructure is not localized
 - Must "localize" SE storage "in flight"

Conclusion

- SIN is a natural and expected evolution for satellite networks
- Lots of unsolved and difficult problems
 - Passing of client state during handover
 - Optimal use of active replication, based on population data
 - Subject to experimentation on machine learning algorithms
- Next paper is on Trust Management in a SIN
 - Involves replacements of the PKI architecture
- Current activities: Experimentation of with a software model
 - Optimization of orbital patterns
 - Caching and replication algorithms, etc.
 - Routing paths established through machine learning