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Introduction: Domain
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Test Station 1 Test Station 2 Test Station 3

PRODUCTION LINE

Defect Piece

ProductPiece 1

Piece 2



Machine Learning 

Classification Model

(learned on prior data)

Introduction: Machine Learning in Manufacturing
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Prediction:

• True Error Prediction:

Avoids errors at an early stage (save costs)

• False Error Prediction:

Misses profits

• Baseline: No use of ML (i.e., no predictions)

➔ Economic savings depend on TP and FP:

Total savings = TP * c(TP) - FP

➔ Quality Managers: knowledge/guess of c(TP)

➔ Evaluation based on precision and critical threshold 

(corresponding to Total savings = 0)

Remove piece at 

this early stage

Test Station 1 Test Station 2 Test Station 3

PRODUCTION LINE

Piece 3



• Usually, several cause-error relationships (Concepts) in manufacturing

• Production processes subject to dynamic change (e.g. mechanical properties of tools)

➔ Cause-error relationships are not permanent (Pt(Y|X)  Pt+1(Y|X)), known as Concept Drift

• Hypothesis: “Adressing concept drift in manufacturing data by separating underlying concepts yields more 

insights than an overall analysis.”

Goal:

• Detect Concept Drift efficiently

• Handle Concept Drift individually

Motivation
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• Cluster data based on corresponding SHAP values1 – “supervised clustering”

• SHAP value: contribution of a single feature to model output (predicted value)

• Clustering: similar instances with regards to how the model computes predictions for them

➔ cluster correspond to underlying concepts the model learned

Approach – Key Idea
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1 S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,” 

in Advances in Neural Information Processing Systems, I. Guyon et al., Eds., vol. 30. Curran Associates, Inc., 2017.
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Approach – Procedure
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driftLog

Data Stream

Time

Window 1 Window 2

Model M

Clusters based on SHAP values

driftLog

Data Stream

Time

Window 1 Window 2

Model M

Initialization phase

Ongoing process

Classic approach Cluster-based approach

• Dividing total data into clusters based on their SHAP values

• driftLog: includes relevant information for drift handling



Approach – Detecting and Handling Drift in Data Streams
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• Different clusters yield separate data streams

• Target variable: sliding window of precision over the last n positive predictions

• Decision to be made based on current precision:

Ignore the next positive prediction or trust it?

Two alternative strategies:

• handle drift based on current precision only: 

if precision < critical threshold , the next positive prediction is ignored, otherwise not

• handle drift based on current precision and established drift detectors (e.g. Page-Hinkley test):

if precision <  and drift is detected at the current instance, the following positive predictions are ignored until precision > 

precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃



Experiments
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• Real manufacturing data of our industry partner SICK AG

• Data: six production lines, covering about a year

• Each experiment: any type of error at a specific test station, previous features serve as input

➔ 30 Experiments, conducted retrospectively, simulation under real-time conditions

• Data containing 67% of errors served as train data, other instances part of window W2

• Classifier: Xgboost with tree booster

Clustering: k-means (elbow method)

Drift detector: Page-Hinkley test

• Pretest: suitable parameters (e.g., sliding window size n=100).



Results – Use Case
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Time distribution of instances

• Heterogeneous distribution 

• Periods where no data is assigned to specific cluster

• Only little data of Cluster 1 in W2

• Data of W2 mostly in Cluster 2

W1 ➔W2



Results – Use Case
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Classification results for W2 – basic ML without handling drift

Handle drift based on current precision only Handle drift based on current precision and drift detector

• Bad performance in Cluster 2 and Cluster 3

• Cluster 2 affects overall performance due to its size

• Performance of Cluster 2 turned into benefit

• Cluster-specific approach outperforms classical approach

• Performance of all clusters turned into benefit

• Cluster-specific approach outperforms classical approach

Best result



Results – Use Case
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Cluster specific precision within a sliding window (n=100) over positive predictions

W1 ➔W2

Drift

critical threshold 

• (Too) little data for Cluster 1, good performance of Cluster 4

• Cluster 3: deterioration at the beginning of W2

• Usually no lasting improvement after deterioration below 



Results – General View
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Sum of total savings over all experiments Pairwise comparison of strategies to handle drift

• Cluster-specific approach outperforms classical approach

• Handle drift by precision only seems more promising
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• Method that uses SHAP values to assign the learned concepts to clusters so that they can be examined individually

• Cluster specific assessment in combination with two strategies for handling drift

• Clustering based assessment outperformed approaches without clustering

(for both strategies of handling drift)

Conclusion


