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Manufacturing Domain
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➢ A single Test Station has often many features to test

➢ A Chain with multiple Test Station increases the number of features highly

➢ A Quality Engineer has to find relevant features of an error



Motivation
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Origin Dataset Most important Feature 

➢ Better or same model performance

➢ Improve interpretability of product error

➢ High number of features has to be analyzed manually

➢ Manual filtering could ignore important feature



Filter Selection Method
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Used Methods:

➢ANOVA

➢Kendall‘s rank coefficient

➢Permutation Feature Importance

• Advantage of better time performance in comparison to wrapper methods 

• Classifier independent, therefore more flexibility to choose a different classifier 

regarding black box optimization. 

• Advantage of the filter-based methods is the ability to scale up to high-

dimensional datasets



Metrics and Pseudo Code
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1. Fselect(F, m, ≥r, p, T, V)

2. S ← F, opt ←−∞
3. Sort(F, ≥r)

4. For i = 1 to |F|

5. C ← {fk ∈ F | k ≤ i}

6. score ← m(C,p,T,V)

7. If score > opt and lp < 𝛼
8. opt ← score

9. S ← C

10. Return (S)

Integrated significance tests in line 7

Pseudo Code

Expected Benefit Rate EBR = 
TP ∗ α − FP

TP+FP+TN+FN

MCC =
TP ∗ TN − FP ∗ FN

TP + FP TP + FN TN + FP 𝑇𝑁 + 𝐹𝑁

TP = Corrupt part predicted as error FP = Good part predicted as error

FN = Corrupt part predicted as good TN = Good part predicted as good

➢ 𝜶 = Adjustable cost factor of how much a correctly identified 

error in relation to an incorrectly identified error will save us

➢ EBR result shows if an ML model is monetary profitable



Datasets and Results
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➢ 25 highly unbalanced datasets used for the experiments

➢ Dataset hat an instance range from 6887 to 194932

➢ Lowest good/corrupt product ratio with 0.001228

➢ Datasets had a feature range from 17 to 133

➢ EBR result > 0 ; ML model is profitable to use

➢ EBR result = 0 ; Model may found a relation, but the predicted error 

probabilities are too low for making an economically reasonable prediction

➢ EBR result < 0 ; ML model could not find a relation to the error origin

Baseline Results:

➢ 11 out of 25 Results > 0

➢ 9 out of 25 Results = 0

➢ 5 out of 25 Results < 0 
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➢Only feature selection with standard parameter for the ML model was used

➢We did not consider the unbalanced datasets

➢Compared to the baseline, we improved the result in 16 out of 75 experiments 
based on the EBR optimization.

➢Eight deteriorations compared to the baseline

➢Deteriorations could be due to a concept drift in the data

➢ANOVA selection method was the best for approach A

Feature Selection Approach A
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➢After feature selection, we used hyperparameter tuning for the best set of features

➢ 21 out of 75 better results and 9 out of 75 worse results based on the EBR optimization 
compared to baseline

➢ 11 out of 75 results and 6 out of 75 got worse based on the EBR optimization compared to 
approach A

➢Advantage to adjust the parameter of the algorithm to provide better results

➢Kendall’s rank provided the best method if we consider the results from the EBR and MCC 
optimization

Feature Selection Approach B 
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➢Every model was optimized with hyperparameter tuning within feature selection

➢Most changes in the number of features and the difference between the optimization metric

➢ 16 out of 25 best results based on the EBR and MCC optimization with Kendall's rank

➢We could reduce in 21 out of 75 cases the number of features and improve the result by optimizing 
with the EBR metric.

➢Compared to approach B we improve 20 results and got worse in 15 cases based on the EBR 
results

Feature Selection Approach C
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➢Approach A best time result = Permutation feature importance in 11 out of 25 cases.

➢Approach B best time result = Kendall’s rank in 13 out of 25 cases. 

➢Approach C best time result = ANOVA in 15 out of 25 cases.

➢Approach A is the fastest approach ; Average time based with ANOVA 00:03:53 (all 25 datasets)

➢Approach C is most time consuming ; Average time based with ANOVA 06:52:26 (all 25 datasets)

Execution time
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➢ Number of tests where best result is with EBR (overall) = 70

➢ Number of tests where best result is with MCC (overall) = 40

➢ Number of tests where BEST results is with EBR and Features reduced (overall) = 19

➢ Number of tests where BEST results is with MCC and Features reduced (overall) = 9

➢ Number of tests where optimizing with EBR is BETTER than baseline (overall) = 56

➢ Number of tests where optimizing with MCC is BETTER than baseline (overall) = 46

Result overview
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• A total of 10 Experiments with 25 datasets

• We obtain most of the best results with experiment Approach C

• Most of the best results for the experiment approaches were achieved by using the permutation 
feature importance selection method

• More features of the dataset can be reduced when using the EBR metric compared to the MCC 
metric

• Kendall’s rank selection method could be used in combination with experiment approach B as 
fastest method regarding the best possible results

Conclusion


