A Reference Ontology for Collision Avoidance Systems and Accountability

Authors

- D. Martín-Lammerding
- José Javier Astrain
- Alberto Córdoba

Presenter

D. Martín-Lammerding Department of Stats. Comput. Sci. Math Public University of Navarre (UPNA) david.martin@unavarra.es

Resume

Telecommunications Engineer, 2000, at the Public University of Navarre.

Specialized in computer security and digital identity projects. I have developed my professional activities in different companies and sectors for more than 20 years.

My research work is focused on ontology-based autonomous systems and how to apply it to unmanned aircraft (UAS).

Introduction

- Unmanned Aerial Systems (UAS) traffic increase
- Safety risk
- Different Collision Avoidance Systems (CAS)
- Incidents with UAS, collisions.

Challenges

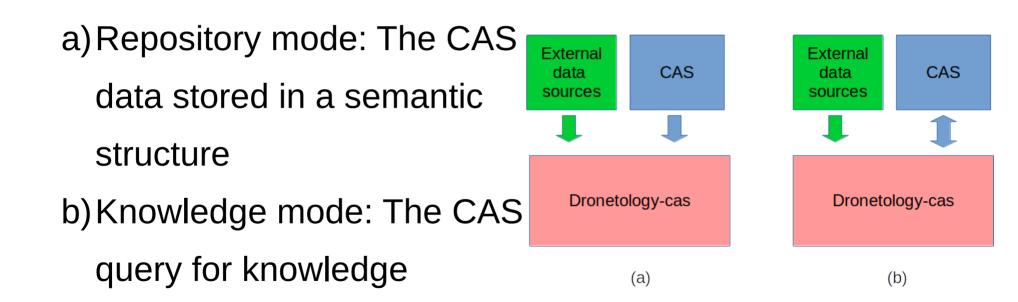
- How to manage CAS data?
- How to improve CAS operation?
- How to improve UAS safety?

Related Work

- Ontologies for sensors
- Air traffic data inter-operability
- Multiple CAS implementations, ACAS-Xu and Daidalus

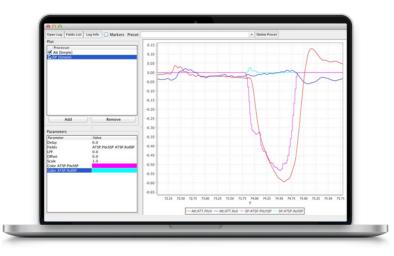
Related Work

• Hardware: Black-boxes, flight recorder


Contribution

- A novel ontology for CAS, Dronetology-cas
- Dronetology-cas constitutes a Knowledge base (KB) for CAS
- A foundation for a knowledge-based CAS

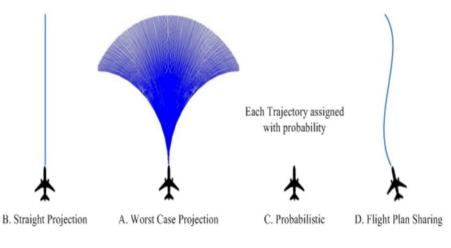
Dronetology-cas integration



Repository mode

CAS's data available for any audit process as triplets.

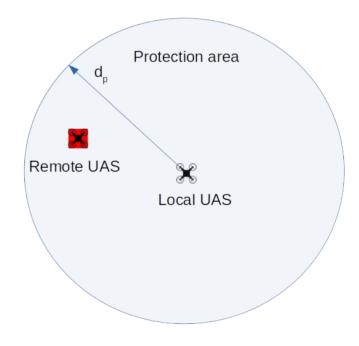
External data sources add additional conflicts



Knowledge mode

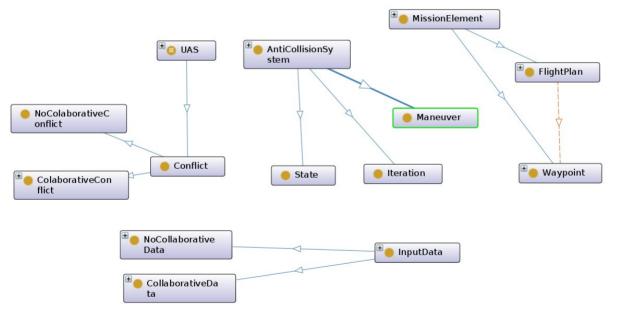
The CAS queries the KB

E.g CAS obtain a method to estimate conflict's position depending the conflict's knowledge available



CAS's concepts in Dronetology-cas

- Protection distance
- Time to collision
- Conflict
- Input Data
- Iteration
- State
- Maneuver



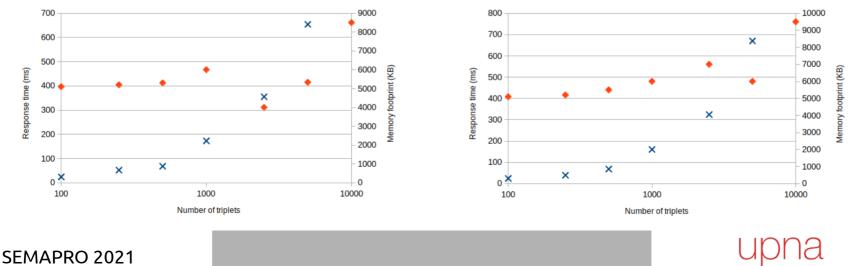
Dronetology-cas: The application ontology

Generic concepts for any CAS

Competency questions

- How many conflicts are detected?
- Which conflict has the shortest time to collision?
- How has been detected the conflict with a given UAS?
- How long it has taken to resolve a conflict?

Performance evaluation


Used 2 CQ for knowledge extraction Executed in a low cost computer, Pi3 15 minutes fight, 10 triples/s, 10000 triples Software components developed in Java 8

Performance evaluation

- KB grows during UAS's flight
- Response time increase
- Response time (x) and memory footprint (◊)

Performance evaluation

- Response time is below the refreshing rate of incoming data when \approx 1000 triplets
- Worst response time is at the end of a flight.

Conclusion

- Dronetology-cas integration modes facilitate its application in any CAS
- A CAS integration in a kowledge-mode implementation requires to balance memory consumption and response time

Future Works

- Implement and test Dronetology-cas with two KB, one for each mode.
- Integration of Dronetology-cas with an existing CAS.

Future Works

- Implementation of a CAS for UAS based on Dronetology-cas
- Create a dataset with semantic mission data
- Define an ontology standard for autonomous UAS.

Thank you

