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Gate-Level Microprocessor 

 Data: vectors of wires 
 ALUs and memories: gates 

Formal verification complexity is exponential 
 Velev & Bryant [FMCAD ’98] 
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Two-Step Formal Methodology 

1) Formally verify the Functional Units  (FUs) and 
Memories in isolation from the rest of the design 

2) Formally verify the pipelined/superscalar/VLIW 
processor after abstracting the FUs and memories, 
but keeping the fully implemented control logic, data 
flow, placement of FUs and memories in pipeline 
stages 
 using our tool, HighCheck 
 applying suitable modeling techniques 
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Abstracting Data 

x ⇒ 
b0 
b1 
b2 

bn-1 
. .

 . 

Terms abstract data values 

Properties: 
 Equality comparison: 

 

 Can be stored in memories 
 Can be selected with ITE operators: 
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Abstracting ALUs 
Uninterpreted Functions abstract computations 

 internal implementation details removed 

F 

 functional consistency: 

F y1 
x1 

       F(x1,y1) F y2 
x2 

       F(x2,y2) 

(x1 = x2) ∧  (y1 = y2)   ⇒   F(x1,y1) = F(x2,y2) 
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Abstracting Memories 
FSM model: 

write 

read 

m 

wd 

a 
rd 

Functions write and read abstract memory operations 
 Forwarding property: 
 read(write(m1, a1, wd), a2)  =  ITE(a2 = a1,  wd,  read(m1, a2)) 
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Application of Abstractions 
ID/EX EX/WB 

Data 
A 
L 
U 

IF/ID 

PC DestReg 

SrcReg 
Valid 

Op 

Instr 
Mem Reg 

File 

+4 

32 32 
7 
5 

= 5 

0 
1 



9 

Application of Abstractions 
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Specification Processor 
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 single-cycle execution 
 only user-visible state 
 much simpler control logic 

F2 
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Safety Correctness Criterion 

Q0
impl Q1

impl Fimpl 

Flush 

Q0
spec Q1

spec Fk
spec 

Flush 

Term-level symbolic simulation 
of Implementation for 1 clock cycle 

symbolic initial state 
(represents 
ANY initial state) 
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Term-Level Symbolic Simulation 

Fimpl 
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Safety Correctness Criterion 

Flush, Burch & Dill [CAV ’94] 
 automatically maps state of pipeline to user-visible state 
 completes partially-executed instructions 

Q0
impl Q1

impl Fimpl 

Flush 

Q0
spec Q1

spec Fk
spec 

Flush 
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Flushing 
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Flushing 
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 Flush = false  during regular operation 
 Flush = true  during flushing 

Flush 
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Safety Correctness Criterion 

Q0
impl Q1

impl Fimpl 

Flush 

Q0
spec Q1

spec Fk
spec 

Flush 

Requirement 
 One pipelined Impl step Fimpl matches up to k Spec steps Fspec 
 k is issue-width of processor 
 stalled or canceled instruction: k =0 
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Safety Correctness Criterion 
In the general case:   equality0  ∨  equality1  ∨  . . . ∨  equalityk   =   true 

 

 
 
 
 
 
 
   

i.e., a proof that 1 step of the Implementation corresponds to between 0 and k 
steps of the Specification, where k is the issue width of the Implementation 
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This is the inductive step of proof by induction: initial Impl state QImpl is  
arbitrary => criterion will hold from ANY state, including next Impl state Q1

Impl 
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Liveness Correctness Criterion 
In the general case:   equality1  ∨  . . . ∨  equalityk * l   =   true 

 

 
 
 
 
 
 
   

i.e., a proof that l steps of the Implementation correspond to between 1 and   
k * l steps of the Specification, where k is the issue width of the 
Implementation 
Indirect method to prove this property: [Velev, ASP-DAC’04] 
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Our Tool: HighCheck 
Implementation 
Processor (Verilog) 

Specification 
Processor (Verilog) 

Simulation Commands 

        Symbolic Simulator 

EUFM Correctness formula 

Decision Procedure 

Boolean  
Correctness formula 

SAT procedure 

counterexample correct 

? 

  Counterexample Analyzer 
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Restriction 1 

= 

Valid Data1 

Data2 

PC 

Abstract data equalities that are both positive & negated 
Example 1: Branch-on-equal decisions 

⇒
 uninterpreted predicate 

PC 
Valid Data1 

Data2 
P1 

Note: Can still model the same features 
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Restriction 2: Data Memory Model 
read and write: abstract memory operations 
 m2 ←  write(m1, a1, wd) 

 rd ←  read(m2, a2) 
 

Forwarding property: 
  rd  =  ITE(a2 = a1,  wd,  read(m1, a2)) 

FSM model: 

write 

read 

m 

wd 

a 
rd 

F1 

F2 

F1 

F2 
Conservative  
approximation 
of memory Forwarding property NOT enforced 

  rd  =  ITE(a2 = a1,  wd,  read(m1, a2)) 
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Positive Equality 

P-terms are compared only in positive equations 
 Connected only with monotonically positive operators AND, OR 

G-terms are compared in both positive and negated 
equations 

As a result of the restrictions, most of the terms become 
p-terms and can be treated as DISTINCT CONSTANTS 

G-terms are assigned small domains of values that have 
to be indexed with fresh Boolean variables 
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Outline 

EUFM Background: Positive Equality 
Applications to Formally Verify Different Architectures 
Conclusion 
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Results 
Our tool flow scales for formally verifying correctness of:  
 complex pipelined/superscalar/VLIW processors with many features: 
  

 
 
 
 
 
 
 
 
 
 
 

 executable code for a given Instruction Set Architecture, including 
cybersecurity properties. 

 

• branch prediction  • delayed branches 
• exceptions • data-value prediction  
• multicycle functional units • mechanisms to correct soft errors 

by re-executing affected 
instructions 

• advanced and speculative loads  • reconfigurable functional units 

• predicated execution  • arrays of reconfigurable 
processing elements  

• register remapping  • multi-threaded execution 
• out-of-order execution based on  
    a reorder buffer 

• reconfigurable polymorphic 
heterogeneous multi-core 
architectures 
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We Formally Verified VLIW Processor 
(DSP) Based on Intel Itanium 

Intel Itanium® features: 
 
• Predicated execution 
• Advanced loads 
• Register remapping 
• Branch prediction 
• Exceptions 
• Multicycle functional 

units 
 
42 VLIW instructions 
9 pipeline stages 
4 VLIW-instruction queue 

13 minutes to formally verify on 1 CPU core 
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FV of Pipelined Processors That 
Detect & Correct Soft Errors 

RazorII fault-detecting flip-flops [Das et al. 2009] 
Instructions affected by soft errors are re-executed 
Instruction re-executed if soft error in any pipeline stage 
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FV of Pipelined Processors with 
Reconfigurable Functional Units 
A method to abstract reconfigurable functional units: 

Data      Op 

Result 

UF 
(Result) 

UF 
(Next_State) 

Configuration_Command 

Present_Configuration_State 
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We Formally Verified ADRES 
Processor with Reconfigurable Array 

A Very Long Instruction Word (VLIW) processor, shown at the top, is 
combined with a coarse-grained reconfigurable array (a), where each  
reconfigurable functional unit (FU) has its dedicated register file (RF), 
and configuration memory (Conf. RAM), as shown in (b). 

VLIW processor 
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FV of Pipelined Processors with 
Hardware Support for Multithreading 
We developed abstraction techniques that allow us to 
formally verify pipelined processors with hardware 
support for ANY number of threads 
 Can scale for GPUs 
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Polymorphic Heterogeneous  
Multi-Core Architectures 
Bahurupi architecture—several simple cores combined 

with coalition dispatch and completion logic to 
accelerate execution of 1 thread [Pricopi & Mitra 2012] 

 

 
 
 
Performance comparable or greater than that of wide 

superscalar design with issue width = sum of issue 
widths of the cores in a coalition, but lower power 
consumption, and higher reliability 
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We Formally Verified Polymorphic 
Heterogeneous Multi-Core 
Processor for Space Applications 

Large coalitions can accelerate  
mission-critical threads, e.g., to analyze 
trajectory of approaching missle and  
determine how to maneuver a jet fighter 
to avoid the missle 

Our method was showcased in  
NASA Tech Briefs (LEW-19207-1, 2014),  
which publishes only the best  
NASA-funded inventions 

We can formally verify such multi-core 
processors completely with our 
technology 
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Abstraction of Coalition Dispatch 

GPC = General PC 
  points to next BB to be 

fetched 
 initialized with address 

of first BB 
Each BB begins with a 

sentinel instruction 
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Abstraction of Control Logic That 
Selects Which Core to Dispatch to  

Flush signal is used to determine controlled flushing 

ReadyCore0

ReadyCore1

SelectCore0

SelectCore1

DispatchSentinelToCore0

DispatchSentinelToCore1

From
cores

From
generator
of
arbitrary
values

Flush
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Ticket Register in Dispatch 

Ticket Register in Dispatch Stage 
 gives unique id to each dispatched BB  
 incremented in each cycle when a BB is dispatched to a core 
 incrementing it is abstracted with UF NextTicket 

 
Serving Register in Completion Stage  

 contains id of next BB to be completed 
 Incrementing it also abstracted with UF NextTicket 
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Abstraction of Each Core 

3 FSMs, each abstracting the execution of a BB 
At most two FSMs have valid BBs initially 
The FSM with no BB can accept a new BB                  

non-deterministically 
An FSM with valid BB: 
 can compute its results non-deterministically in a 

cycle of regular symbolic simulation, as long as all 
input operands are available 

 computes the results of such a basic block in every 
clock cycle during flushing 

Computations abstracted with UFs and UPs 
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Modeling of Coalition Completion 
Stage 
Completes an entire BB per clock cycle 
 if the BB’s results are computed 
 and BB’s ticket equals the current value of the 

Serving register 
If the completed BB ends on a branch then 
 the condition for a branch misprediction is formed 

based on the branch prediction made for that BB in 
the Coalition Dispatch Stage 

Serving Register updated with term produced by UF 
NextTicket applied to current term for value of 
Serving Register  

 



37 

Required Invariants (1 of 2) 

1)  if there are k valid BBs in the cores, then the term 
abstracting the current value of the Ticket Register 
equals k applications of UF NextTicket to the term 
abstracting the current value of the Serving Register; 

2)  if a BB in a core is valid, then the term abstracting its 
ticket equals either the term for the current value of 
the Serving register, or up to k – 1 applications of UF          
NextTicket to the term for the current value of the 
Serving register, where k is the number of valid BBs 
in the cores; 

3)  if a BB in a core is valid, then the term abstracting its 
ticket does not equal the term abstracting the ticket 
of another valid BB in a core, or the current value of 
the Ticket Register; 
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Required Invariants (2 of 2) 

4)  if a BB in a core is valid, then each of its live-in 
registers either has its data value available, or the 
renaming tag of that live-in register equals the 
renaming tag of a live-out register whose data value 
is not computed yet, and that belongs to a valid BB 
that is in a core and has a ticket that is ahead of the 
ticket of the given BB, i.e., the term abstracting the 
ticket of the given BB is equal to one or more 
applications of UF NextTicket to the term abstracting 
the ticket of the BB that will compute the data value; 

5)  if a valid BB in a core is ready for completion, then 
the data values of its live-out registers, exception 
condition, as well as branch direction and target if 
the BB ends on a branch, have been computed. 
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Non-Pipelined Specification 

Defined to fetch, execute, and complete one BB per 
clock cycle 

Uses the same UFs and UPs to compute the results of 
instructions as the abstractions of the cores 

No branch prediction & no register renaming 
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Setup & Tool Flow 

Workstation with two 3.47-GHz six-core Intel Xeon 
x5690 processors, and 64 GB of memory, running 
Red Hat Enterprise Linux v6.4.  

 (Only a single core was used.) 
Tool flow: 
• HighCheck 



41 

Results 

Proving safety of model with 2 cores: < 1 sec 
 
Proving safety of model with 4 cores: < 3 sec 
 
Note: these times include the checking of the invariants 
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Outline 

EUFM Background: Positive Equality 
Applications to Formally Verify Different Architectures 
Conclusion 
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Conclusion (1 of 2) 
We presented abstraction techniques that allow us to exploit the 

property of Positive Equality to formally verify a wide range of 
processor architectures very efficiently 

These techniques: 
• outperform other approaches for formal verification of 

microprocessors by orders of magnitude 
• require minimal manual intervention 
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Conclusion (2 of 2) 
Our tool flow scales for formally verifying correctness of safety and 
liveness of complex pipelined/superscalar/VLIW processors with: 
  

 
 
 
 
 
 
 
 
 
 
 

CNF formulas generated in this work 20 years ago have been used in the 
development of all academic and industrial SAT solvers since then. 

• branch prediction  • delayed branches 
• exceptions • data-value prediction  
• multicycle functional units • mechanisms to correct soft errors 

by re-executing affected 
instructions 

• advanced and speculative loads  • reconfigurable functional units 

• predicated execution  • arrays of reconfigurable 
processing elements  

• register remapping  • multi-threaded execution 
• out-of-order execution based on  
    a reorder buffer 

• reconfigurable polymorphic 
heterogeneous multi-core 
architectures 
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