
Results from More Than Two
Decades of Exploiting Efficient
Abstractions and Translation

to SAT to Formally Verify
Complex

Pipelined/Superscalar/VLIW
Microprocessors

Miroslav N. Velev

2

Outline

EUFM Background: Positive Equality
Applications to Formally Verify Different Architectures
Conclusion

3

Gate-Level Microprocessor

 Data: vectors of wires
 ALUs and memories: gates

Formal verification complexity is exponential
 Velev & Bryant [FMCAD ’98]

ID/EX EX/WB

Data
A
L
U

IF/ID

PC DestReg

SrcReg
Valid

Op

Instr
Mem Reg

File

+4

32 32
7
5

= 5

0
1

4

Two-Step Formal Methodology

1) Formally verify the Functional Units (FUs) and
Memories in isolation from the rest of the design

2) Formally verify the pipelined/superscalar/VLIW
processor after abstracting the FUs and memories,
but keeping the fully implemented control logic, data
flow, placement of FUs and memories in pipeline
stages
 using our tool, HighCheck
 applying suitable modeling techniques

5

Abstracting Data

x ⇒
b0
b1
b2

bn-1
. .

 .

Terms abstract data values

Properties:
 Equality comparison:

 Can be stored in memories
 Can be selected with ITE operators:

x

y
= (x = y)

x
y

f

ITE(f, x, y)
1

0

true
x
y x 1

0

false
x
y y 1

0

6

Abstracting ALUs
Uninterpreted Functions abstract computations

 internal implementation details removed

F

 functional consistency:

F y1
x1

 F(x1,y1) F y2
x2

 F(x2,y2)

(x1 = x2) ∧ (y1 = y2) ⇒ F(x1,y1) = F(x2,y2)

7

Abstracting Memories
FSM model:

write

read

m

wd

a
rd

Functions write and read abstract memory operations
 Forwarding property:
 read(write(m1, a1, wd), a2) = ITE(a2 = a1, wd, read(m1, a2))

8

Application of Abstractions
ID/EX EX/WB

Data
A
L
U

IF/ID

PC DestReg

SrcReg
Valid

Op

Instr
Mem Reg

File

+4

32 32
7
5

= 5

0
1

9

Application of Abstractions
ID/EX EX/WB

Data
A
L
U

IF/ID

PC DestReg

SrcReg
Valid

Op

Instr
Mem Reg

File

+4

=

0
1

⇒ More general processor
 easier to prove correct

Functional units & memories formally verified separately

F1

Mem2
Mem1 F2

10

Specification Processor

Data

PC DestReg

SrcReg
Valid

Op

Instr
Mem Reg

File

+4 F1

Mem2
Mem1

 single-cycle execution
 only user-visible state
 much simpler control logic

F2

11

Safety Correctness Criterion

Q0
impl Q1

impl Fimpl

Flush

Q0
spec Q1

spec Fk
spec

Flush

Term-level symbolic simulation
of Implementation for 1 clock cycle

symbolic initial state
(represents
ANY initial state)

12

Term-Level Symbolic Simulation

Fimpl

ID/EX EX/WB

A
L
U

=

DestReg

SrcReg
Valid

Op

0
1

F2

wa

wv

ea
eop

Data ed

es
ev

(es = wa)
(es = wa) ∧ wv

wd

ITE((es = wa) ∧ wv, wd, ed)

ID/EX EX/WB

A
L
U

=

DestReg

SrcReg
Valid

Op

0
1

F2 Data
F2(eop, ITE((es = wa) ∧ wv, wd, ed))

ea

ev

F2(eop, ITE((es = wa) ∧ wv, wd, ed))

13

Safety Correctness Criterion

Flush, Burch & Dill [CAV ’94]
 automatically maps state of pipeline to user-visible state
 completes partially-executed instructions

Q0
impl Q1

impl Fimpl

Flush

Q0
spec Q1

spec Fk
spec

Flush

14

Flushing
ID/EX EX/WB

Data
A
L
U

IF/ID

PC DestReg

SrcReg

Op

Instr
Mem Reg

File

+4

=

0
1

F1

Mem2
Mem1

Valid

F2

15

Flushing
ID/EX EX/WB

Data
A
L
U

IF/ID

PC DestReg

SrcReg
Valid

Op

Instr
Mem Reg

File

+4

=

0
1

F1

Mem2
Mem1

 Flush = false during regular operation
 Flush = true during flushing

Flush

F2

16

Safety Correctness Criterion

Q0
impl Q1

impl Fimpl

Flush

Q0
spec Q1

spec Fk
spec

Flush

Requirement
 One pipelined Impl step Fimpl matches up to k Spec steps Fspec
 k is issue-width of processor
 stalled or canceled instruction: k =0

17

Safety Correctness Criterion
In the general case: equality0 ∨ equality1 ∨ . . . ∨ equalityk = true

i.e., a proof that 1 step of the Implementation corresponds to between 0 and k
steps of the Specification, where k is the issue width of the Implementation

F Impl

F Spec

Flush

Q Impl

Flush

Q 1
Impl

Q ∗
Spec

equality k

Q 0
Spec

equality 1

=

F Spec F Spec

equality 2

. . .

k steps

1 step

equality 0

=

= =

Q 1
Spec Q 2

Spec Q k
Spec

. . .

Q0
impl

Fimpl Q1
impl

Fimpl Q2
impl

Fimpl . . .

This is the inductive step of proof by induction: initial Impl state QImpl is
arbitrary => criterion will hold from ANY state, including next Impl state Q1

Impl

18

Liveness Correctness Criterion
In the general case: equality1 ∨ . . . ∨ equalityk * l = true

i.e., a proof that l steps of the Implementation correspond to between 1 and
k * l steps of the Specification, where k is the issue width of the
Implementation
Indirect method to prove this property: [Velev, ASP-DAC’04]

F Impl

F Spec

Flush

Q Impl

Flush

Q 1
Impl

Q ∗
Spec

equality k

Q 0
Spec

equality 1

=

F Spec F Spec

equality 2

. . .

k * l steps

l steps

= =

Q 1
Spec Q 2

Spec Q k
Spec

. . .

19

Our Tool: HighCheck
Implementation
Processor (Verilog)

Specification
Processor (Verilog)

Simulation Commands

 Symbolic Simulator

EUFM Correctness formula

Decision Procedure

Boolean
Correctness formula

SAT procedure

counterexample correct

?

 Counterexample Analyzer

20

Restriction 1

=

Valid Data1

Data2

PC

Abstract data equalities that are both positive & negated
Example 1: Branch-on-equal decisions

⇒
 uninterpreted predicate

PC
Valid Data1

Data2
P1

Note: Can still model the same features

21

Restriction 2: Data Memory Model
read and write: abstract memory operations
 m2 ← write(m1, a1, wd)

 rd ← read(m2, a2)

Forwarding property:
 rd = ITE(a2 = a1, wd, read(m1, a2))

FSM model:

write

read

m

wd

a
rd

F1

F2

F1

F2
Conservative
approximation
of memory Forwarding property NOT enforced

 rd = ITE(a2 = a1, wd, read(m1, a2))

22

Positive Equality

P-terms are compared only in positive equations
 Connected only with monotonically positive operators AND, OR

G-terms are compared in both positive and negated
equations

As a result of the restrictions, most of the terms become
p-terms and can be treated as DISTINCT CONSTANTS

G-terms are assigned small domains of values that have
to be indexed with fresh Boolean variables

23

Outline

EUFM Background: Positive Equality
Applications to Formally Verify Different Architectures
Conclusion

24

Results
Our tool flow scales for formally verifying correctness of:
 complex pipelined/superscalar/VLIW processors with many features:

 executable code for a given Instruction Set Architecture, including
cybersecurity properties.

• branch prediction • delayed branches
• exceptions • data-value prediction
• multicycle functional units • mechanisms to correct soft errors

by re-executing affected
instructions

• advanced and speculative loads • reconfigurable functional units

• predicated execution • arrays of reconfigurable
processing elements

• register remapping • multi-threaded execution
• out-of-order execution based on
 a reorder buffer

• reconfigurable polymorphic
heterogeneous multi-core
architectures

25

We Formally Verified VLIW Processor
(DSP) Based on Intel Itanium

Intel Itanium® features:

• Predicated execution
• Advanced loads
• Register remapping
• Branch prediction
• Exceptions
• Multicycle functional

units

42 VLIW instructions
9 pipeline stages
4 VLIW-instruction queue

13 minutes to formally verify on 1 CPU core

Fetch

Engine

Int FU 1 Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6
Instr 7
Instr 8
Instr 9

Int
Reg
File
FP
Reg
File

Pred
Reg
File

BA
Reg
File

Data
Mem

ALAT

Int FU 2
Int FU 3
Int FU 4

FP FU 1

FP FU 2

BA FU 1

BA FU 2
BA FU 3

Branch
Predictor

26

FV of Pipelined Processors That
Detect & Correct Soft Errors

RazorII fault-detecting flip-flops [Das et al. 2009]
Instructions affected by soft errors are re-executed
Instruction re-executed if soft error in any pipeline stage

27

FV of Pipelined Processors with
Reconfigurable Functional Units
A method to abstract reconfigurable functional units:

Data Op

Result

UF
(Result)

UF
(Next_State)

Configuration_Command

Present_Configuration_State

28

We Formally Verified ADRES
Processor with Reconfigurable Array

A Very Long Instruction Word (VLIW) processor, shown at the top, is
combined with a coarse-grained reconfigurable array (a), where each
reconfigurable functional unit (FU) has its dedicated register file (RF),
and configuration memory (Conf. RAM), as shown in (b).

VLIW processor

29

FV of Pipelined Processors with
Hardware Support for Multithreading
We developed abstraction techniques that allow us to
formally verify pipelined processors with hardware
support for ANY number of threads
 Can scale for GPUs

30

Polymorphic Heterogeneous
Multi-Core Architectures
Bahurupi architecture—several simple cores combined

with coalition dispatch and completion logic to
accelerate execution of 1 thread [Pricopi & Mitra 2012]

Performance comparable or greater than that of wide

superscalar design with issue width = sum of issue
widths of the cores in a coalition, but lower power
consumption, and higher reliability

31

We Formally Verified Polymorphic
Heterogeneous Multi-Core
Processor for Space Applications

Large coalitions can accelerate
mission-critical threads, e.g., to analyze
trajectory of approaching missle and
determine how to maneuver a jet fighter
to avoid the missle

Our method was showcased in
NASA Tech Briefs (LEW-19207-1, 2014),
which publishes only the best
NASA-funded inventions

We can formally verify such multi-core
processors completely with our
technology

32

Abstraction of Coalition Dispatch

GPC = General PC
 points to next BB to be

fetched
 initialized with address

of first BB
Each BB begins with a

sentinel instruction

ICache

AddrFirstInstrAfterSentinel

LiveInReg1

LiveInReg2

LiveInReg3

LiveOutReg1

GPC

LiveOutReg2

LiveOutReg3

NumInstrBB

EndIsBranch

AddrOf

selected
core

To

0
1 PredictedBranchTarget

PredictTaken

0
1

CorrectedBBAddress
CorrectBranchMisprediction

0
1

ProcessException

ExceptionHandlerAddress

DispatchSentinelToCore0
DispatchSentinelToCore1

Coalition
Completion

From

branch
predictor

From

Stage

GPC

NextBB

From control logic
in Fig. 3

33

Abstraction of Control Logic That
Selects Which Core to Dispatch to

Flush signal is used to determine controlled flushing

ReadyCore0

ReadyCore1

SelectCore0

SelectCore1

DispatchSentinelToCore0

DispatchSentinelToCore1

From
cores

From
generator
of
arbitrary
values

Flush

34

Ticket Register in Dispatch

Ticket Register in Dispatch Stage
 gives unique id to each dispatched BB
 incremented in each cycle when a BB is dispatched to a core
 incrementing it is abstracted with UF NextTicket

Serving Register in Completion Stage

 contains id of next BB to be completed
 Incrementing it also abstracted with UF NextTicket

35

Abstraction of Each Core

3 FSMs, each abstracting the execution of a BB
At most two FSMs have valid BBs initially
The FSM with no BB can accept a new BB

non-deterministically
An FSM with valid BB:
 can compute its results non-deterministically in a

cycle of regular symbolic simulation, as long as all
input operands are available

 computes the results of such a basic block in every
clock cycle during flushing

Computations abstracted with UFs and UPs

36

Modeling of Coalition Completion
Stage
Completes an entire BB per clock cycle
 if the BB’s results are computed
 and BB’s ticket equals the current value of the

Serving register
If the completed BB ends on a branch then
 the condition for a branch misprediction is formed

based on the branch prediction made for that BB in
the Coalition Dispatch Stage

Serving Register updated with term produced by UF
NextTicket applied to current term for value of
Serving Register

37

Required Invariants (1 of 2)

1) if there are k valid BBs in the cores, then the term
abstracting the current value of the Ticket Register
equals k applications of UF NextTicket to the term
abstracting the current value of the Serving Register;

2) if a BB in a core is valid, then the term abstracting its
ticket equals either the term for the current value of
the Serving register, or up to k – 1 applications of UF
NextTicket to the term for the current value of the
Serving register, where k is the number of valid BBs
in the cores;

3) if a BB in a core is valid, then the term abstracting its
ticket does not equal the term abstracting the ticket
of another valid BB in a core, or the current value of
the Ticket Register;

38

Required Invariants (2 of 2)

4) if a BB in a core is valid, then each of its live-in
registers either has its data value available, or the
renaming tag of that live-in register equals the
renaming tag of a live-out register whose data value
is not computed yet, and that belongs to a valid BB
that is in a core and has a ticket that is ahead of the
ticket of the given BB, i.e., the term abstracting the
ticket of the given BB is equal to one or more
applications of UF NextTicket to the term abstracting
the ticket of the BB that will compute the data value;

5) if a valid BB in a core is ready for completion, then
the data values of its live-out registers, exception
condition, as well as branch direction and target if
the BB ends on a branch, have been computed.

39

Non-Pipelined Specification

Defined to fetch, execute, and complete one BB per
clock cycle

Uses the same UFs and UPs to compute the results of
instructions as the abstractions of the cores

No branch prediction & no register renaming

40

Setup & Tool Flow

Workstation with two 3.47-GHz six-core Intel Xeon
x5690 processors, and 64 GB of memory, running
Red Hat Enterprise Linux v6.4.

 (Only a single core was used.)
Tool flow:
• HighCheck

41

Results

Proving safety of model with 2 cores: < 1 sec

Proving safety of model with 4 cores: < 3 sec

Note: these times include the checking of the invariants

42

Outline

EUFM Background: Positive Equality
Applications to Formally Verify Different Architectures
Conclusion

43

Conclusion (1 of 2)
We presented abstraction techniques that allow us to exploit the

property of Positive Equality to formally verify a wide range of
processor architectures very efficiently

These techniques:
• outperform other approaches for formal verification of

microprocessors by orders of magnitude
• require minimal manual intervention

44

Conclusion (2 of 2)
Our tool flow scales for formally verifying correctness of safety and
liveness of complex pipelined/superscalar/VLIW processors with:

CNF formulas generated in this work 20 years ago have been used in the
development of all academic and industrial SAT solvers since then.

• branch prediction • delayed branches
• exceptions • data-value prediction
• multicycle functional units • mechanisms to correct soft errors

by re-executing affected
instructions

• advanced and speculative loads • reconfigurable functional units

• predicated execution • arrays of reconfigurable
processing elements

• register remapping • multi-threaded execution
• out-of-order execution based on
 a reorder buffer

• reconfigurable polymorphic
heterogeneous multi-core
architectures

	Slide Number 1
	Outline
	Gate-Level Microprocessor
	Two-Step Formal Methodology
	Abstracting Data
	Abstracting ALUs
	Abstracting Memories
	Application of Abstractions
	Application of Abstractions
	Specification Processor
	Safety Correctness Criterion
	Term-Level Symbolic Simulation
	Safety Correctness Criterion
	Flushing
	Flushing
	Safety Correctness Criterion
	Safety Correctness Criterion
	Liveness Correctness Criterion
	Our Tool: HighCheck
	Restriction 1
	Restriction 2: Data Memory Model
	Positive Equality
	Outline
	Results
	Slide Number 25
	FV of Pipelined Processors That Detect & Correct Soft Errors
	FV of Pipelined Processors with Reconfigurable Functional Units
	We Formally Verified ADRES Processor with Reconfigurable Array
	FV of Pipelined Processors with Hardware Support for Multithreading
	Polymorphic Heterogeneous �Multi-Core Architectures
	We Formally Verified Polymorphic Heterogeneous Multi-Core Processor for Space Applications
	Abstraction of Coalition Dispatch
	Abstraction of Control Logic That Selects Which Core to Dispatch to
	Ticket Register in Dispatch
	Abstraction of Each Core
	Modeling of Coalition Completion Stage
	Required Invariants (1 of 2)
	Required Invariants (2 of 2)
	Non-Pipelined Specification
	Setup & Tool Flow
	Results
	Outline
	Conclusion (1 of 2)
	Conclusion (2 of 2)

