Testing Deterministic Avionics Networks Using Orthogonal Arrays

M. Efe ALTUNTAȘ^{1,2}, Muhammed Şeker^{1,2}, Pınar Kışla^{1,2}, Eyüp Can Akpolat^{2,5}, İbrahim Hökelek^{3,5},

M. Selim Demir³, Erhan Akdoğan⁴

¹Yıldız Technical University, Dept. of Avionics Engineering (Turkey)

²Turkish Aerospace Industries, Inc.(TAI) (Turkey)

³TÜBİTAK, Informatics and Information Security Research Center (BİLGEM)(Turkey)

⁴Yildiz Technical University, Dept. of Mechatronics Engineering (Turkey)

⁵*İstanbul Technical University, Dept. of Mechatronics Engineering (Turkey)*

Contact email: muhammedefe.altuntas@tai.com.tr

03.10.2021

Muhammed Efe ALTUNTAŞ

- Undergraduate
 - İstanbul Şehir University Electrical Electronics Engineering (2017)
 - İstanbul Şehir University Computer Engineering (2018) (Double Major Program)
- Graduate
 - Yıldız Technical University Avionics Engineering (present)
- Work Experience
 - Hardware Design and Verification Engineer Turkish Aerospace Industries, Inc. (2018 present)
- Research Interest
 - FPGA
 - UVM
 - ARINC 664
 - Avionic test systems
 - RISC-V

Motivation

- To verify deterministic avionics network device
 - Thousands of virtual links with large number of configuration options
- Orthogonal Array (OA): formal test generation technique which reduces the number of test cases with respect to coverage of all test space
- Orthogonal array types:
 - Same level OA
 - Multi-level OA
- In this work, we present an approach: «Chained OA» is based on multi-level OA
 - Multiple and consecutive applications of multi-level OA's
 - Allows for preserving the number of combinations for a set of selected features

ARINC 664 – Avionics Deterministic Network

- ARINC 664 has 3 main elements:
 - Switch
 - End system (ES)
 - Virtual Links (VL)
- DTN switches have different functions
 - Filtering
 - Policing
 - Switching
 - End System
- Switch configuration parameters :
 - Numbers of VLs
 - Source and destination end systems
 - Minimum (L_{min}) and maximum (L_{max}) frame sizes
 - Bandwidth allocation gap (BAG)

- level

Mixed level orthogonal array:

of levels

- All factors have the same numbers of

• Each factor may have different number

variables • Same level orthogonal array:

to cover S-wise combinations of

- L (Level), representing the number of distinct values that a factor can take • S (Strength), the number of rows needed
- **F** (**Factor**): number of columns in OA, where each column corresponds to a variable of an experiment

Orthogonal Arrays

5/13

Example of Same Level OA

• An example OA :

OA(4,3,2,2) – N: 4, F: 3, L: 2, S: 2

- Number of all combination:
 - $level^{factor} = 2^3 = 8$ (see in Table A)
- After applying OA(4,3,2,2), number of all possibilities :
 - $level^{strength} = 2^2$ (see in Table B)

	Tab	le A	
Runs	f_1	f_2	f_3
1	0	0	0
2	0	0	1
3	0	1	0
4	0	1	1
5	1	0	0
6	1	0	1
7	1	1	0
8	1	1	1

	Tab	le B		
Runs	f_1	f_2	<i>f</i> ₃	
1	0	0	0	
2	0	1	1	
3	1	0	1	
4	1	1	0	

Example of Multi - Level OA

 $OA(N, L_1^{|F_1|} L_2^{|F_2|} \dots L_v^{|F_v|}, L, S)$

- The example OA is shown:
 OA(12, 2⁴ 3¹, 2)
 - N = 12, F_1 = 4, F_2 = 1, L_1 = 2, L_2 = 3 and S=2
 - The total number of combinations: $Level^{Factor}$: $2^4 \times 3^1 = 48$
 - After OA application: $Level^{Strength}$: $2^2 \times 3^1 = 12$ (see in Table)

Runs	f_1	f_2	f ₃	f ₄	f_5
1	0	0	0	0	0
2	0	1	0	1	0
3	1	0	1	0	0
4	1	1	1	1	0
5	0	0	1	1	1
6	0	1	1	0	1
7	1	0	0	0	1
8	1	1	0	1	1
9	0	0	1	1	2
10	0	1	0	0	2
11	1	0	0	1	2
12	1	1	1	0	2

Test Space for ARINC 664 Switch

TURKISH AEROSPACE

No. of Ports	BAG (ms)	L _{min}	L _{max}	Priority	Incoming VLs to a Port	Outgoing VLs from a Port
1	1	64	1518	High	192	192
2	2	128	1400	Low	384	384
3	4	150	1300		576	576
4	8	200	1200		960	960
	16	300	1100		1152	1152
	32	400	1000		1920	1920
	64	512	900		2880	2880
	128	750	800		3840	3840

 $C = 8^{1152} \times 8^{1152} \times 8^{1152} \times 2^{1152} \times 4^{1152}$

C is the combination number of VL configuration parameters for 1152 VLs OA generates only one configuration file for this table

Chained OA with Regulated Test Space

:

1920

:

960

:

Runs 143

Nu	mber of \	VLs for O	4 _{<i>g</i>1}	Fai	0A ₋₁ specif	v # of VI		
Port 1	Port 2	Port 3	Port 4	$OA_{g1}(N_{g1} L_{g1}^{g1} S_{g1})$	for each incor	ning ports		
192	192	192	192			-		
384	384	384	384		Г Л		n _{1 E}]	
576	576	576	576	Result of OA_{g1}	indicates	· ·	: ;	
960	960	960	960	# of runs for ea	ach $OA_{i,j} \mid n_{\Lambda}$	••••	Лл Е	
1152	1152	1152	1152			' <i>g</i> 1,'		
1920	1920	1920	1920			04	Result for (Δ
2880	2880	2880	2880	04 (256 8^{4} 2)	# of Duns	Dout 1		
3840	3840	3840	3840	0/1g1(2000 2)	# OI RUIS	Port 1	Port 2	
					Runs 1	192	384	
					Runs 2	576	1152	

Switch supports 4096 VLs Runs in OA_{g1} with higher VLs are eliminated 256 rows reduced to 143

:

576

Port 4

1920

384

:

192

Chained OA with Regulated Test Space

	V	L Parai	meters	for <i>OA_{i,}</i>	į	
No. Port	of ts	BAG (ms)	L _{min}	L _{max}	Priority	$OA \dots (n \dots I^{F_{g_2}} S_1)$ Each $OA_{i,j}$ is VL configuration file
1		1	64	1518	High	$GA_{i,j}(n_{i,j} L_{g2} S_2)$ for specified port
2		2	128	1400	Low	
3		4	150	1300		$N_{-}F_{ad}$
4		8	200	1200		Total # of OA $\sum_{i=1}^{N} \sum_{j=1}^{2g_{1}} OA$
		16	300	1100		configuration file $\sum_{i=1}^{J} \sum_{j=1}^{J} \sum_{i=1}^{J} \sum_{j=1}^{J}
		32	400	1000		
		64	512	900		$OA_{i,i}(n_{i,i}, 4^1, 8^3, 2^1, 2)$
		128	750	800		
0A _{g1}	(256	6 8 ⁴ 2))		OA _{i,j} (r	$n_{i,j} 4^1 8^3 2^1 2$ $i=1$ $j=1$ $DA_{i,j}$ $A_{i,j}$ $A_{i,j}$ $A_{i,j}$

System Architecture of DTN Test Tool

GUI of Test System

	DO	DSIS					00
Cumulative Result 24.2% 15.2% 60.6% Pass Fail Not Run	ConfigName 1 Config1 2 Config2 3 Config3	Passed	Fail 5 4	Not Run 9 5 2	ElapsedTime 3:35:21 2:43:46 2:38:38	LastFinishTime 1:40:27 1:11:42 1:06:34	Status run Idle Idle
Config1 40.91% 4.55% 54.55%	Group Filtering Function Policing Function Switching Function Basic Communication	Passed 4 4 0	Fail 0 0 0	NotRun 2 3 2	ElapsedTime 1:10:35 1:08:32 1:11:06 0:05:08	LastFinishTime 0:00:01 0:00:00 0:00:00 0:00:00	Status Idle run Idle Idle
Filtering Function 28.57% 57.14%	Test 1 CrcError 2 FrameSizeOver1518Error 3 FrameSizeUnder64Error 4 FrameAliError 5 FrameLMinError 6 FrameLMaxError 7 FrameMacConstError			Passed Fa 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0	il ElapsedTime 0:57:14 0:01:02 0:02:40 0:02:30 0:02:45 0:01:50 0:02:34	LastFinishTime 0:02:34 0:03:36 0:06:16 0:08:44 0:11:31 0:13:21 0:15:55 BILC	Status idle idle idle idle idle idle idle

- Major OA methods can be inadequate for DTN switch test spaces. That's why, Chained OA is developed to use for DTN parameters.
- Chained OA reduces the number of configuration with respect to coverage of all test space.
 It produced 572 different configuration files for DTN switch.
- Future extension of this work includes development of OAs that incorporate parameters defined for single and multiple end systems and reliability test suites for interoperability of switch and end systems for avionics applications.