

Optimizing Statistical Distance Measures in Multivariate SVM for Sentiment Quantification

Kevin Labille and Susan Gauch University of Arkansas, Arkansas, USA

Contact email: kclabill@uark.edu

KEVIN LABILLE

Kevin Labille received his Ph.D in Computer Science in 2019 from the University of Arkansas under the supervision of Dr. Susan Gauch where he focused on text-mining and natural language processing. He then pursued a Post-doc with Dr. Xintao Wu (University of Arkansas) where his research were oriented towards dynamic recommender systems and fairness in machine learning.

Motivation

This paper focuses on sentiment quantification:

- A perfect classifier is a good quantifier
- A good classifier is not necessarily a good quantifier

- C1
 - false positive rate different than false negative rate
 - 5/6 correct
 - It is a good classifier, but poor quantifier
- C2
 - FPR = FNR
 - 2/6 correct
 - Perfect quantifier but poor classifier

Outline

- Introduction
- Related Work
- Quantifying Tweets
- Experimental Evaluation
- Results
- Conclusion

Introduction

Introduction and background

Introduction

"The only downside is the sound does not have a lot of bass, but honestly the quality of sound for the price is impressive "

Sentiment analysis

- The computational analysis of opinions in text
 - Who has a positive opinion? (A, B)
 - Who has a negative opinion? (C, D, E, F)

Image from http://www.softicons.com

Sentiment quantification

- The estimation the proportion of document that belong to each polarity classes
 - How many have a positive opinion? (2)
 - How many have a negative opinion? (4)

Related Work

Sentiment analysis in Twitter

- Go et al. [2009]
 - Compared SVM, Naïve Bayes classifier, and MaxEnt clssifier
 - MaxEnt performed better
 - POS tag not useful in Twitter sentiment classification
- Mohammad et al. [2013]
 - SVM classifier that uses sentiment lexicons as feature
 - Lexicons-related features improved accuracy by more than 8.5%
- Tang et al. [2014]
 - Word embedding combined with neural networks
 - Outperforms Mohammed et al. by 1.85%
- Labille et al. [2016]
 - Using information theory and probabilities for word sentiment scores

Sentiment quantification in Twitter

- Gao and Sebastiani [2015]
 - Pioneer work
 - Compare SVM(KLD) to traditional SVM
 - SVM(KLD) > traditional SVM
- Vilares et al. [2016]
 - Convolutional Neural Network to get hidden activation values
 - Train SVM(KLD) using these values
- Stojanovski et al. [2016]
 - Convolutional Neural Network + Gated Neural Network
 - Performances of CNN alone and GNN alone are very comparable
 - Outperformed Vilares et al.
- Mathieu Cliché [2017]
 - Used a deep-learning approach that uses both a Convolutional Neural Network (CNN) and a LSTM

Optimizing Statistical Distance Measures in Multivariate SVM for Sentiment Quantification

- This paper offers three contributions:
 - (1) We propose a new statistical method for building sentiment lexicons on short texts (tweets) that captures the polarity strength (score) and polarity orientation (sign) for both the **positive** and **negative components** of the words
 - (2) We use the paired-score sentiment lexicons to derive **new sentiment features** that better summarize the distribution of the positive and negative contributions of each word within the dataset
 - (3) Through a multivariate Support Vector Machine (SVM), we explore and compare numerous kernels that optimize various statistical distance measures to understand how they behave in a sentiment quantification task

Traditional sentiment lexicons vs paired-score sentiment lexicons

- Single sentiment score
 - One polarity strength
 - One polarity orientation
 - No information about how much
 w is positive and negative
 - 0.4 = 0.8 0.4
 - 0.4 = 0.5 0.1

wonky impossible assemble	-0.30 -0.72 0.01
bother	-0.47

- Paired sentiment score
 - Uses both the positive and negative distributions of the word
 - Catches more information than a single score
 - Could improve accuracy for quantifying

wonky impossible assemble bother	0.60 0.10 0.02 0.25	0.30 -0.82 0.01 -0.72	

Quantifying Tweets: (1) Paired-score sentiment lexicons

 Sentiment scores are calculated using a probabilistic approach. We define the positivity of a word w as pos(w), and its negativity as neg(w):

10/ 1

$$Pos(w) = \frac{pdf(w)}{N_{pos}} \times \frac{1}{df(w)} \qquad \qquad Neg(w) = \frac{ndf(w)}{N_{neg}} \times \frac{1}{df(w)}$$

Where:

$$pdf(w) = \sum_{t \in T_{pos}} x \begin{cases} x = \frac{1}{|tweet|} & \text{if } w \in t \\ x = 0 & \text{otherwise} \end{cases}$$
$$ndf(w) = \sum_{t \in T_{neg}} x \begin{cases} x = \frac{1}{|tweet|} & \text{if } w \in t \\ x = 0 & \text{otherwise} \end{cases}$$
$$And:$$
$$df(w) = pdf(w) + ndf(w)$$

$$N_{pos} = \sum_{w \in vocab} pdf(w)$$
$$N_{neg} = \sum_{w \in vocab} ndf(w)$$

We then normalize both scores in the range [0.0, 1.0]

Quantifying Tweets: (2) Sentiment feature vectors

- TF-IDF Bag of Words (tf-idf of the words computed from the training dataset)
- We further derive additional numerical features that catch several sentiment aspects using the word's sentiment scores extracted from the paired-score lexicon

Each Tweet is therefore represented by the following features:

- BoW TF-IDF
- *Token found*: the number of words in the tweet that were found in the lexicon
- *token total*: the number of words in the tweet
- *max pos*: the maximum positive score in the tweet
- *min pos*: the minimum positive score in the tweet
- *max neg*: the maximum negative score in the tweet
- *min neg*: the minimum negative score in the tweet
- *ratio*: the ratio of *avg pos* over *avg neg*

Yielding a feature vector of size |vocabulary|+7 for each word

Quantifying Tweets: (3) Sentiment quantifier

- We use a Support Vector Machine (SVM) for multivariate performance measures (SVM^{perf})[T. Joachims, 2005] to optimize and compare several statistical distances
 - multivariate SVM allows the optimization of multivariate performance measures as opposed to univariate SVM

Experimental Evaluation: datasets

• Sentiment analysis datasets¹

Name	т	rain + dev		Test			
	# pos	# neg	# total	# pos	# neg	# total	
SemEval2013 Task 2 A	4,215	1,798	6,013	1,475	559	2,034	
SemEval2013 Task 9 A	4,215	1,798	6,013	982	202	1,184	
SemEval2013 Task 10 A	4,215	1,798	6,013	1,038	365	1,403	
SST	989	842	1,831	263	195	458	
Sanders	418	54	872	101	118	219	

• Sentiment quantification datasets ^{1,2}

Name	Train			Dev			Dev-test				Test					
	# topics	# pos	# neg	# total	# topics	# pos	# neg	# total	# topics	# pos	# neg	# total	# topics	# pos	# neg	# total
SemEval2016 task 4 D	60	 2,841 	582	3,423	20	778	 279 	1,057	20	893	216	 1,109	100	8,212	2,339	10,551
SemEval2017 task 4 D	100	8,212 	2,339 	10,551	-	-	. –	-	-	 –	. –	 -	125	2,463	3,722	6,185

¹we ignore tweets that are labeled neutral for both training and testing

²we ignore the topics during the training phase while we test on each topic separately during the testing phase

Experimental Evaluation: metrics and baselines

- Metrics
 - Kullback-Leibler Divergence (KLD):

$$KLD(\hat{p}, p) = \sum_{c_i \in C} p(c_i) \cdot log \frac{p(c_i)}{\hat{p}(c_i)}$$

Mean Absolute Error (MAE):

$$MAE(\hat{p}, p) = \frac{1}{|C|} \sum_{c \in C} |\hat{p}(c) - p(c)|$$

- Relative Absolute Error (RAE):

$$RAE(\hat{p}, p) = \frac{1}{|C|} \sum_{c \in C} \frac{|\hat{p}(c) - p(c)|}{p(c)}$$

- Baselines:
 - Univariate SVM with a linear kernel: classify each tweet then count the prevalence of both the positive and negative classes
 - Multivariate SVM: SVM^{perf} from T. Joachims (2005)
 - Multivariate SVM: SVM^{perf}(KLD) from Gao and Sebastiani (2015)

p: predicted distribution
p: true distribution

Results:

single scores vs paired scores

- Single score lexicons:
 - Single score(w) = Pos(w) Neg(w)
 - Sentiment features derived from single score lexicon:
 - token found: the number of words in the tweet that were found in the lexicon
 - token total: the number of words in the tweet
 - max: the maximum score in the tweet
 - min: the minimum score in the tweet
 - avg: the average of the scores in the tweet
 - nb pos: the number of positive words in the tweet
 - nb neg: the number of negative words in the tweet
 - Single score feature vectors:
 - BoW TF-IDF + sentiment features
 - Size of feature vector: |vocabulary| + 7
- Methodology
 - Sentiment quantification using the baseline approach (Univariate SVM with linear kernel)

	Metrics	Single score lexicon	Paired score lexicon
	KLD	0.094	0.090
SemEval2016	AE	0.132	0.130
	RAE	1.269	1.378
	KLD	0.174	0.138
SemEval2017	AE	0.216	0.188
	RAE	2.972	2.559
- 	KLD	0.134	0.114
Average	AE	0.174	0.159
	RAE	2.121	1.969

Results

Results:

sentiment quantification

• Comparison of the various multivariate SVMs against the baselines

	Metrics	univariate SVM	SVM(perf)	SVM(KLD)	SVM(HD)	SVM(BD)	SVM(JSD)	SVM(TVD)	SVM(RAD)
	KLD	0.031	0.011	0.036	0.005	0.044	0.046	0.000	0.030
SST	AE	0.124	0.148	0.266	0.100	0.295	0.301	0.028	0.245
	RAE	0.254	0.149	0.268	0.101	0.296	0.303	0.029	0.246
	KLD	0.000	0.004	0.010	0.001	0.007	0.028	0.000	0.007
Sanders	AE	0.005	0.088	0.138	0.037	0.115	0.230	0.005	0.115
builderb	RAE	0.010	0.088	0.138	0.037	0.115	0.231	0.005	0.115
SemEval	KLD	0.003	0.046	0.019	0.000	0.018	0.024	0.003	0.019
2013	AE	0.032	0.275	0.194	0.006	0.191	0.219	0.080	0.194
task A	RAE	0.081	0.290	0.204	0.006	0.201	0.230	0.084	0.204
SemEval	KLD	0.011	0.018	0.022	0.001	0.020	0.026	0.001	0.022
2014	AE	0.059	0.171	0.204	0.040	0.197	0.222	0.045	0.204
task A	RAE	0.208	0.191	0.228	0.045	0.221	0.249	0.050	0.228
SemEval	KLD	0.017	0.041	0.032	0.001	0.030	0.036	0.002	0.031
2015	AE	0.085	0.260	0.251	0.047	0.244	0.267	0.058	0.248
Task A	RAE	0.220	0.276	0.266	0.050	0.259	0.283	0.061	0.263
SemEval	KLD	0.090	0.069	0.010	0.013	0.014	0.011	0.018	0.014
2016	AE	0.130	0.242	0.098	0.111	0.108	0.098	0.136	0.106
Task D	RAE	1.378	0.266	0.111	0.125	0.121	0.111	0.156	0.119
SemEval	KLD	0.138	0.254	0.024	0.028	0.034	0.025	0.031	0.033
2017	AE	0.188	0.577	0.171	0.182	0.207	0.176	0.192	0.203
Task D	RAE	2.559	0.676	0.200	0.213	0.241	0.205	0.225	0.237
	KLD	0.041	0.063	0.022	0.007	0.024	0.028	0.008	0.022
Average	AE	0.089	0.252	0.189	0.075	0.194	0.216	0.078	0.188
	RAE	0.673	0.276	0.202	0.082	0.208	0.230	0.087	0.202

Results:

sentiment quantification

- Comparison of SVM(HD) against other sentiment quantification approaches
 - metric reported: KLD

	SST	Sanders	SemEval2013	SemEval2014	SemEval2015	SemEval2016	SemEval2017
SVM(HD)	0.005	0.001	0.000	0.001	0.000	0.013	0.028
SVM(KLD) ¹	0.036	0.010	0.019	0.022	0.032	0.010	0.024
SVM(KLD) ²	0.011	0.001	0.029	0.033	0.076	-	-
Stojanovski et al. ^{2,3}	-	-	-	-	-	0.034	-
Mathieu Cliché ^{2,4}	-	-	-	-	-	-	0.036

¹ Multivariate SVM with a KLD kernel using our approach.

² Results reported as per the authors in their respective papers. We did not reproduce their work.

³ CNN combined with GNN

⁴ CNN + LSTM

Conclusion

- In this paper we have presented the following:
 - A new probabilistic approach to create a novel sentiment lexicon that captures and uses both the positivity and the negativity of words separately
 - We showed that such a lexicon can be used to derive sentiment features to model Tweets in the Vector Space Model
 - We showed that employing these feature vectors with a multivariate Support Vector Machine (SVM) that optimizes statistical distances metrics can improve sentiment quantification accuracy
 - Such a SVM machine achieves the good performances when optimizing the Hellinger Distance

Thank you!

- Kevin Labille kclabill@uark.edu